8 research outputs found
A novel accelerometry-based algorithm for the detection of step durations over short episodes of gait in healthy elderly.
Background: The assessment of short episodes of gait is clinically relevant and easily implemented, especially given limited space and time requirements. BFS (body-fixed-sensors) are small, lightweight and easy to wear sensors, which allow the assessment of gait at relative low cost and with low interference. Thus, the assessment with BFS of short episodes of gait, extracted from dailylife physical activity or measured in a standardised and supervised setting, may add value in the study of gait quality of the elderly. The aim of this study was to evaluate the accuracy of a novel algorithm based on acceleration signals recorded at different human locations (lower back and heels) for the detection of step durations over short episodes of gait in healthy elderly subjects.Methods: Twenty healthy elderly subjects (73.7 ± 7.9 years old) walked twice a distance of 5 m, wearing a BFS on the lower back, and on the outside of each heel. Moreover, an optoelectronic three-dimensional (3D) motion tracking system was used to detect step durations. A novel algorithm is presented for the detection of step durations from low-back and heel acceleration signals separately. The accuracy of the algorithm was assessed by comparing absolute differences in step duration between the three methods: step detection from the optoelectronic 3D motion tracking system, step detection from the application of the novel algorithm to low-back accelerations, and step detection from the application of the novel algorithm to heel accelerations.Results: The proposed algorithm successfully detected all the steps, without false positives and without false negatives. Absolute average differences in step duration within trials and across subjects were calculated for each comparison, between low-back accelerations and the optoelectronic system were on average 22.4 ± 7.6 ms (4.0 ± 1.3 % of average step duration), between heel accelerations and the optoelectronic system were on average 20.7 ± 11.8 ms (3.7 ± 1.9 %), and between low-back accelerations and heel accelerations were on average 27.8 ± 15.1 ms (4.9 ± 2.5 % of average step duration).Conclusions: This study showed that the presented novel algorithm detects step durations over short episodes of gait in healthy elderly subjects with acceptable accuracy from low-back and heel accelerations, which provides opportunities to extract a range of gait parameters from short episodes of gait
Technology for monitoring everyday prosthesis use: a systematic review
BACKGROUND
Understanding how prostheses are used in everyday life is central to the design, provision and evaluation of
prosthetic devices and associated services. This paper reviews the scientific literature on methodologies and
technologies that have been used to assess the daily use of both upper- and lower-limb prostheses. It discusses
the types of studies that have been undertaken, the technologies used to monitor physical activity, the benefits
of monitoring daily living and the barriers to long-term monitoring.
METHODS
A systematic literature search was conducted in PubMed, Web of Science, Scopus, CINAHL and EMBASE of
studies that monitored the activity of prosthesis-users during daily-living.
RESULTS
60 lower-limb studies and 9 upper-limb studies were identified for inclusion in the review. The first studies in
the lower-limb field date from the 1990s and the number has increased steadily since the early 2000s. In contrast,
the studies in the upper-limb field have only begun to emerge over the past few years. The early lower-limb
studies focused on the development or validation of actimeters, algorithms and/or scores for activity
classification. However, most of the recent lower-limb studies used activity monitoring to compare prosthetic components. The lower-limb studies mainly used step-counts as their only measure of activity, focusing on the
amount of activity, not the type and quality of movements. In comparison, the small number of upper-limb
studies were fairly evenly spread between development of algorithms, comparison of everyday activity to
clinical scores, and comparison of different prosthesis user populations. Most upper-limb papers reported the
degree of symmetry in activity levels between the arm with the prosthesis and the intact arm.
CONCLUSIONS
Activity monitoring technology used in conjunction with clinical scores and user feedback, offers significant
insights into how prostheses are used and whether they meet the user’s requirements. However, the cost, limited
battery-life and lack of availability in many countries mean that using sensors to understand the daily use of
prostheses and the types of activity being performed has not yet become a feasible standard clinical practice.
This review provides recommendations for the research and clinical communities to advance this area for the
benefit of prosthesis users
Correction to: Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium (<em>Journal of NeuroEngineering and Rehabilitation</em>, (2023), 20, 1, (78), 10.1186/s12984-023-01198-5)
\ua9 The Author(s) 2024.Following publication of the original article [1], the author noticed the errors in Table 1, and in Discussion section. In Table 1 under Metric (Gait sequence detection) column, the algorithms GSDB was updated with wrong description, input, output, language and citation and GSDc with wrong description has been corrected as shown below: (Table presented.) Description of algorithms for each metric: gait sequence detection (GSD), initial contact event detection (ICD), cadence estimation (CAD) and stride length estimation (SL) Metric Name Description Input Output Language References GSDA Based on a frequency-based approach, this algorithm is implemented on the vertical and anterior–posterior acceleration signals. First, these are band pass filtered to keep frequencies between 0.5 and 3 Hz. Next, a convolution of a 2 Hz sinewave (representing a template for a gait cycle) is performed, from which local maxima will be detected to define the regions of gait acc_v: vertical acceleration acc_ap: anterior–posterior acceleration WinS = 3 s; window size for convolution OL = 1.5 s; overlap of windows Activity_thresh = 0.01; Motion threshold Fs: sampling frequency Start: beginning of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1
7 N vector End: termination of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1
7 N vector Matlab\uae Iluz, Gazit [40] GSDB This algorithm, based on a time domain-approach, detects the gait periods based on identified steps. First, the norm of triaxial acceleration signal is low-pass filtered (FIR, fc = 3.2 Hz), then a peak detection procedure using a threshold of 0.1 [g] is applied to identify steps. Consecutive steps, detected using an adaptive step duration threshold are associated to gait sequences acc_norm: norm of the 3D-accelerometer signal Fs: sampling frequency th: peak detection threshold: 0.1 (g) Start: beginning of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1
7 N vector End: termination of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1
7 N vector Matlab\uae Paraschiv-Ionescu, Newman [41] GSDc This algorithm utilizes the same approach as GSDBthe only difference being a different threshold for peak detection of 0.15 [g] acc_norm: norm of the 3D-accelerometer signal Fs: sampling frequency th: peak detection threshold: 0.15 (g) Start: beginning of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1
7 N vector End: termination of N gait sequences [s] relative to the start of a recording or a test/trial. Format: 1
7 N vector Matlab\uae Paraschiv-Ionescu, Newman [41] In Discussion section, the paragraph should read as "Based on our findings collectively, we recommend using GSDB on cohorts with slower gait speeds and substantial gait impairments (e.g., proximal femoral fracture). This may be because this algorithm is based on the acceleration norm (overall accelerometry signal rather than a specific axis/direction (e.g., vertical), hence it is more robust to sensor misalignments that are common in unsupervised real-life settings. Moreover, the use of adaptive threshold, that are derived from the features of a subject’s data and applied to step duration for detection of steps belonging to gait sequences, allows increased robustness of the algorithm to irregular and unstable gait patterns" instead of “Based on our findings collectively, we recommend using GSDB on cohorts with slower gait speeds and substantial gait impairments (e.g., proximal femoral fracture). This may be because this algorithm is based on the acceleration norm (overall accelerometry signal rather than a specific axis/direction (e.g., vertical), hence it is more robust to sensor misalignments that are common in unsupervised real-life settings [41]. Moreover, the use of adaptive thresholds, that are derived from the features of a subject’s data and applied to the amplitude of acceleration norm and to step duration for detection of steps belonging to gait sequences, allows increased robustness of the algorithm to irregular and unstable gait patterns”
Walking on common ground: a cross-disciplinary scoping review on the clinical utility of digital mobility outcomes
Physical mobility is essential to health, and patients often rate it as a high-priority clinical outcome. Digital mobility outcomes (DMOs), such as real-world gait speed or step count, show promise as clinical measures in many medical conditions. However, current research is nascent and fragmented by discipline. This scoping review maps existing evidence on the clinical utility of DMOs, identifying commonalities across traditional disciplinary divides. In November 2019, 11 databases were searched for records investigating the validity and responsiveness of 34 DMOs in four diverse medical conditions (Parkinson’s disease, multiple sclerosis, chronic obstructive pulmonary disease, hip fracture). Searches yielded 19,672 unique records. After screening, 855 records representing 775 studies were included and charted in systematic maps. Studies frequently investigated gait speed (70.4% of studies), step length (30.7%), cadence (21.4%), and daily step count (20.7%). They studied differences between healthy and pathological gait (36.4%), associations between DMOs and clinical measures (48.8%) or outcomes (4.3%), and responsiveness to interventions (26.8%). Gait speed, step length, cadence, step time and step count exhibited consistent evidence of validity and responsiveness in multiple conditions, although the evidence was inconsistent or lacking for other DMOs. If DMOs are to be adopted as mainstream tools, further work is needed to establish their predictive validity, responsiveness, and ecological validity. Cross-disciplinary efforts to align methodology and validate DMOs may facilitate their adoption into clinical practice
Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device
This study aimed to validate a wearable device’s walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson’s Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and − 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application. Trial registration: ISRCTN – 12246987