19 research outputs found

    Clinical translation of a click-labeled 18F-octreotate radioligand for imaging neuroendocrine tumors

    Get PDF
    © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc. We conducted the first-in-human study of 18F-fluoroethyl triazole [Tyr3] octreotate (18F-FET-βAG-TOCA) in patients with neuroendocrine tumors (NETs) to evaluate biodistribution, dosimetry, and safety. Despite advances in clinical imaging, detection and quantification of NET activity remains a challenge, with no universally accepted imaging standard. Methods: Nine patients were enrolled. Eight patients had sporadic NETs, and 1 had multiple endocrine neoplasia type 1 syndrome. Patients received 137-163 MBq (mean ± SD, 155.7 ± 8 MBq) of 18F-FET-βAG-TOCA. Safety data were obtained during and 24 h after radioligand administration. Patients underwent detailed wholebody PET/CT multibed scanning over 4 h with sampling of venous bloods for radioactivity and radioactive metabolite quantification. Regions of interest were defined to derive individual and mean organ residence times; effective dose was calculated with OLINDA 1.1. Results: All patients tolerated 18F-FET-βAG-TOCA with no adverse events. Over 60% parent radioligand was present in plasma at 60 min. High tumor (primary and metastases)-to-background contrast images were observed. Physiologic distribution was seen in the pituitary, salivary glands, thyroid, and spleen, with low background distribution in the liver, an organ in which metastases commonly occur. The organs receiving highest absorbed dose were the gallbladder, spleen, stomach, liver, kidneys, and bladder. The calculated effective dose over all subjects (mean ± SD) was 0.029 ± 0.004 mSv/MBq. Conclusion: The favorable safety, imaging, and dosimetric profile makes 18F-FET-βAGTOCA a promising candidate radioligand for staging and management of NETs. Clinical studies in an expanded cohort are ongoing to clinically qualify this agent

    An evaluation of the brain distribution of [11C]GSK1034702, a muscarinic-1 (M1) positive allosteric modulator in the living human brain using positron emission tomography

    Get PDF
    The ability to quantify the capacity of a central nervous system (CNS) drug to cross the human blood-brain barrier (BBB) provides valuable information for de-risking drug development of new molecules. Here, we present a study, where a suitable positron emission tomography (PET) ligand was not available for the evaluation of a potent muscarinic acetylcholine receptor type-1 (M1) allosteric agonist (GSK1034702) in the primate and human brain. Hence, direct radiolabelling of the novel molecule was performed and PET measurements were obtained and combined with in vitro equilibrium dialysis assays to enable assessment of BBB transport and estimation of the free brain concentration of GSK1034702 in vivo. GSK1034702 was radiolabelled with ¹¹C, and the brain distribution of [¹¹C]GSK1034702 was investigated in two anaesthetised baboons and four healthy male humans. In humans, PET scans were performed (following intravenous injection of [¹¹C]GSK1034702) at baseline and after a single oral 5-mg dose of GSK1034702. The in vitro brain and plasma protein binding of GSK1034702 was determined across a range of species using equilibrium dialysis. The distribution of [¹¹C]GSK1034702 in the primate brain was homogenous and the whole brain partition coefficient (VT) was 3.97. In contrast, there was mild regional heterogeneity for GSK1034702 in the human brain. Human whole brain VT estimates (4.9) were in broad agreement with primate VT and the fP/fND ratio (3.97 and 2.63, respectively), consistent with transport by passive diffusion across the BBB. In primate and human PET studies designed to evaluate the transport of a novel M1 allosteric agonist (GSK1034702) across the BBB, we have demonstrated good brain uptake and BBB passage consistent with passive diffusion or active influx. These studies discharged some of the perceived development risks for GSK1034702 and provided information to progress the molecule into the next stage of clinical development

    A general copper-mediated nucleophilic18F fluorination of arenes

    No full text
    Molecules labeled with fluorine‐18 are used as radiotracers for positron emission tomography. An important challenge is the labeling of arenes not amenable to aromatic nucleophilic substitution (SNAr) with [18F]F−. In the ideal case, the 18F fluorination of these substrates would be performed through reaction of [18F]KF with shelf‐stable readily available precursors using a broadly applicable method suitable for automation. Herein, we describe the realization of these requirements with the production of 18F arenes from pinacol‐derived aryl boronic esters (arylBPin) upon treatment with [18F]KF/K222 and [Cu(OTf)2(py)4] (OTf=trifluoromethanesulfonate, py=pyridine). This method tolerates electron‐poor and electron‐rich arenes and various functional groups, and allows access to 6‐[18F]fluoro‐L‐DOPA, 6‐[18F]fluoro‐m‐tyrosine, and the translocator protein (TSPO) PET ligand [18F]DAA1106

    Metal-free oxidative fluorination of phenols with [18F]fluoride

    No full text
    The radiochemical synthesis of [18F]4‐fluorophenols is based on phenol umpolung under oxidative conditions and direct nucleophilic fluorination with [18F]fluoride (see scheme, TBAF=tetra‐n‐butylammonium fluoride, TFA=trifluoroacetic acid). Readily available O‐unprotected 4‐tert‐butyl phenols are used as precursors in this one‐pot protocol. The reaction is completed in less than 30 minutes at room temperature and can be performed using standard or microfluidic technology
    corecore