42 research outputs found
Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.
RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)
An Inducible System for Silencing Establishment Reveals a Stepwise Mechanism in Which Anchoring at the Nuclear Periphery Precedes Heterochromatin Formation
In eukaryotic cells, silent chromatin is mainly found at the nuclear periphery forming subnuclear compartments that favor silencing establishment. Here, we set up an inducible system to monitor silencing establishment at an ectopic locus in relation with its subnuclear localization in budding yeast. We previously showed that introducing LacI bound lacO arrays in proximity to gene flanked by HML silencers favors the recruitment of the yeast silencing complex SIR at this locus, leading to its silencing and anchoring at the nuclear periphery. Using an inducible version of this system, we show that silencing establishment is a stepwise process occurring over several cell cycles, with the progressive recruitment of the SIR complex. In contrast, we observed a rapid, SIR-independent perinuclear anchoring, induced by the high amount of LacI binding at the lacO array leading to nucleosome eviction at this array and to the phosphorylation of H2A in the neighboring nucleosomes by Mec1 kinase. While the initial phosphorylation of H2A (H2A-P) and perinuclear anchoring are independent of the SIR complex, its latter recruitment stabilizes H2A-P and reinforces the perinuclear anchoring. Finally, we showed that Sir3 spreading stabilizes nucleosomes and limits the access of specific DNA-binding protein to DNA
Changes in soil carbon mineralization related to earthworm activity depend on the time since inoculation and their density in soil
International audienceEarthworms play a key role in soil carbon mineralization, but their effect is highly uncertain and suspected to vary as a function of several factors, particularly the earthworm density and time from earthworm inoculation. We conducted a meta-analysis considering these factors based on 42 experiments comparing carbon mineralization in the absence and presence of earthworms at different times. The results reveal an average carbon mineralization increase of 24% (sd 41%) in the presence of earthworms with an initial median earthworm density of 1.95 mg/g soil DM (Dry Mass) (sd 48%). We show that carbon mineralization due to earthworms was related to their density and time from inoculation. From a simple regression model using these two variables, the estimated impact of earthworms on carbon mineralization was 20% increase from 0 to 60 days and 14% decrease at day 350 for a density of worms commonly found in soils (0.5 mg/g soil DM). Finally, we proposed a simple equation that could be used in organic matter decomposition models that do not take macrofauna into account
Scenarios of future annual carbon footprints of astronomical research infrastructures
International audienceResearch infrastructures have been identified as an important source of greenhouse gas emissions of astronomical research. Based on a comprehensive inventory of 1,211 ground-based observatories and space missions, we assessed the evolution of the number of astronomical facilities and their carbon footprint from 1945 to 2022. We found that space missions dominate greenhouse gas emissions in astronomy, showing an important peak at the end of the 1960s, followed by a decrease that has turned again into a rise over the last decade. Extrapolating past trends, we predict that greenhouse gas emissions from astronomical facilities will experience no strong decline in the future, and may even rise substantially, unless research practices are changed. We demonstrate that a continuing growth in the number of operating astronomical facilities is not environmentally sustainable. These findings should motivate the astronomical community to reflect about the necessary evolutions that would put astronomical research on a sustainable path
Automatic multiresolution age-related macular degeneration detection from fundus images
International audienceAge-related Macular Degeneration (AMD) is a leading cause of legal blindness. As the disease progress, visual loss occurs rapidly, therefore early diagnosis is required for timely treatment. Automatic, fast and robust screening of this widespread disease should allow an early detection. Most of the automatic diagnosis methods in the literature are based on a complex segmentation of the drusen, targeting a specific symptom of the disease. In this paper, we present a preliminary study for AMD detection from color fundus photographs using a multiresolution texture analysis. We analyze the texture at several scales by using a wavelet decomposition in order to identify all the relevant texture patterns. Textural information is captured using both the sign and magnitude components of the completed model of Local Binary Patterns. An image is finally described with the textural pattern distributions of the wavelet coefficient images obtained at each level of decomposition. We use a Linear Discriminant Analysis for feature dimension reduction, to avoid the curse of dimensionality problem, and image classification. Experiments were conducted on a dataset containing 45 images (23 healthy and 22 diseased) of variable quality and captured by different cameras. Our method achieved a recognition rate of 93.3%, with a specificity of 95.5% and a sensitivity of 91.3%. This approach shows promising results at low costs that in agreement with medical experts as well as robustness to both image quality and fundus camera model
Impacts of surface gravity waves on a tidal front: A coupled model perspective
A set of realistic coastal coupled ocean-wave numerical simulations is used to study the impact of surface gravity waves on a tidal temperature front and surface currents. The processes at play are elucidated through analyses of the budgets of the horizontal momentum, the temperature, and the turbulence closure equations. The numerical system consists of a 3D coastal hydrodynamic circulation model (Model for Applications at Regional Scale, MARS3D) and the third generation wave model WAVEWATCH III (WW3) coupled with OASIS-MCT at horizontal resolutions of 500 and 1500 m, respectively. The models were run for a period of low to moderate southwesterly winds as observed during the Front de Marée Variable (FroMVar) field campaign in the Iroise Sea where a seasonal small-scale tidal sea surface temperature front is present. Over the 2 day period considered, long fetch waves grow gradually propagating north east and east.
Contrasting a stand-alone ocean run with a coupled ocean-wave run shows that waves move the Ushant front offshore by up to 4 kilometres and cool the offshore stratified side of the front by up to 1.5°C. The analysis of the temperature budget shows that the change in advection is the dominant factor contributing to the frontal shift while the contribution of wave enhanced vertical temperature diffusion is secondary. Temperature, considered to be a tracer, is advected in the coupled run by the Lagrangian current resulting from the quasi-Eulerian and Stokes drift. Although the Stokes drift is directed shorewards, changes in the quasi-Eulerian current lead to a more offshore advection in the coupled than the stand-alone run. The quasi-Eulerian current is reduced (enhanced) during the ebb (flood) flow which correspond to periods of wave-following (-opposing) currents. This is due to wave breaking enhanced vertical mixing acting on the positive vertical gradient present in the quasi-Eulerian current during both ebb and flood tides. Partially coupled runs reveal that it is the surface flux of TKE associated to wave breaking that is key rather than the changes in the surface stress. They further elucidate the role of other modelled wave related processes. Although the contribution of the Stokes–Coriolis force and the wave breaking induced enhancement in vertical mixing to the quasi-Eulerian current are of similar magnitude and sign, it does not contribute significantly to the frontal shift. This is because it partially counters the Stokes drift advection which pushes the front shorewards. All Stokes drift related processes combined thus only lead to a very slight displacement of the front
The carbon footprint of IRAP
42 pages, 11 figuresWe present an assessment of the greenhouse gases emissions of the Institute for Research in Astrophysics and Planetology (IRAP), located in Toulouse (France). It was performed following the established "Bilan Carbone" methodology, over a large scope compared to similar previous studies, including in particular the contribution from the purchase of goods and services as well as IRAP's use of external research infrastructures, such as ground-based observatories and space-borne facilities. The carbon footprint of the institute for the reference year 2019 is 7400 +/- 900 tCO2e. If we exclude the contribution from external research infrastructures to focus on a restricted perimeter over which the institute has some operational control, IRAP's emissions in 2019 amounted to 3300 +/- 400 tCO2e. Over the restricted perimeter, the contribution from purchasing goods and services is dominant, about 40% of the total, slightly exceeding the contribution from professional travel including hotel stays, which accounts for 38%. Local infrastructures make a smaller contribution to IRAP's carbon footprint, about 25% over the restricted perimeter. We note that this repartition may be specific to IRAP, since the energy used to produce the electricity and heating has a relatively low carbon footprint. Over the full perimeter, the large share from the use of ground-based observatories and space-borne facilities and the fact that the majority of IRAP purchases are related to instrument development indicate that research infrastructures represent the most significant challenge for reducing the carbon footprint of research at our institute. With ~260 staff members employed, our results imply that performing research in astronomy and astrophysics at IRAP according to the standards of 2019 produces average GHG emissions of 28 tCO2e/yr per person involved in that activity (Abridged)
A comprehensive assessment of the carbon footprint of an astronomical institute
International audienceThe development and use of research infrastructures accounts for more than 70% of the carbon footprint of the Institute for Research in Astrophysics and Planetology. Our community needs to rethink this crucial facet of astronomical research to engage in effective and perennial reduction strategies.The development and use of research infrastructures accounts for more than 70% of the carbon footprint of the Institute for Research in Astrophysics and Planetology. Our community needs to rethink this crucial facet of astronomical research to engage in effective and perennial reduction strategies
Estimate of the carbon footprint of astronomical research infrastructures
International audienceThe carbon footprint of astronomical research is an increasingly topical issue with first estimates of research institute and national community footprints having recently been published. As these assessments have typically excluded the contribution of astronomical research infrastructures, we complement these studies by providing an estimate of the contribution of astronomical space missions and ground-based observatories using greenhouse gas emission factors that relates cost and payload mass to carbon footprint. We find that worldwide active astronomical research infrastructures currently have a carbon footprint of 20.3 ± 3.3 MtCO2 equivalent (CO2e) and an annual emission of 1,169 ± 249 ktCO2e yr−1 corresponding to a footprint of 36.6 ± 14.0 tCO2e per year per astronomer. Compared with contributions from other aspects of astronomy research activity, our results suggest that research infrastructures make the single largest contribution to the carbon footprint of an astronomer. We discuss the limitations and uncertainties of our method and explore measures that can bring greenhouse gas emissions from astronomical research infrastructures towards a sustainable level