29 research outputs found

    Projected Evolution of California's San Francisco Bay-Delta-River System in a Century of Climate Change

    Get PDF
    Background: Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. Methodology/Principal Findings: We linked a series of models to investigate responses of California’s San Francisco Estuary-Watershed (SFEW) system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010–2099 projections of nine indicators of changing climate, hydrology and habitat quality. Trends of these indicators measure rates of: increasing air and water temperatures, salinity and sea level; decreasing precipitation, runoff, snowmelt contribution to runoff, and suspended sediment concentrations; and increasing frequency of extreme environmental conditions such as water temperatures and sea level beyond the ranges of historical observations. Conclusions/Significance: Most of these environmental indicators change substantially over the 21 st century, and many would present challenges to natural and managed systems. Adaptations to these changes will require flexible planning t

    Plasma levels of the MMP-9:TIMP-1 complex as prognostic biomarker in breast cancer:a retrospective study

    Get PDF
    BACKGROUND: Worldwide more than one million women are annually diagnosed with breast cancer. A considerable fraction of these women receive systemic adjuvant therapy; however, some are cured by primary surgery and radiotherapy alone. Prognostic biomarkers guide stratification of patients into different risk groups and hence improve management of breast cancer patients. Plasma levels of Matrix Metalloproteinase-9 (MMP-9) and its natural inhibitor Tissue inhibitor of metalloproteinase-1 (TIMP-1) have previously been associated with poor patient outcome and resistance to certain forms of chemotherapy. To pursue additional prognostic information from MMP-9 and TIMP-1, the level of the MMP-9 and TIMP-1 complex (MMP-9:TIMP-1) was investigated in plasma from breast cancer patients. METHODS: Detection of protein:protein complexes in plasma was performed using a commercially available ELISA kit and, for the first time, the highly sensitive in-solution proximity ligation assay (PLA). We screened plasma from 465 patients with primary breast cancer for prognostic value of the MMP-9:TIMP-1 complex. Both assays were validated and applied for quantification of MMP-9:TIMP-1 concentration. In this retrospective study, we analyzed the association between the concentration of the MMP-9:TIMP-1 complex and clinicopathological data and disease free survival (DFS) in univariate and multivariate survival analyses. RESULTS: Following successful validation both assays were applied for MMP-9:TIMP-1 measurements. Of the clinicopathological parameters, only menopausal status demonstrated significant association with the MMP-9:TIMP-1 complex; P = 0.03 and P = 0.028 for the ELISA and PLA measurements, respectively. We found no correlation between the MMP-9:TIMP-1 protein complex and DFS neither in univariate nor in multivariate survival analyses. CONCLUSIONS: Despite earlier reports linking MMP-9 and TIMP-1 with prognosis in breast cancer patients, we here demonstrate that plasma levels of the MMP-9:TIMP-1 protein complex hold no prognostic information in primary breast cancer as a stand-alone marker. We demonstrate that the highly sensitive in-solution PLA can be employed for measurements of protein:protein complexes in plasma

    Projected Evolution of California’s San Francisco Bay-Delta-River System

    No full text
    Background: Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. Methodology/Principal Findings: We linked a series of models to investigate responses of California’s San Francisco Estuary-Watershed (SFEW) system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010–2099 projections of nine indicators of changing climate, hydrology and habitat quality. Trends of these indicators measure rates of: increasing air and water temperatures, salinity and sea level; decreasing precipitation, runoff, snowmelt contribution to runoff, and suspended sediment concentrations; and increasing frequency of extreme environmental conditions such as water temperatures and sea level beyond the ranges of historical observations. Conclusions/Significance: Most of these environmental indicators change substantially over the 21 st century, and many would present challenges to natural and managed systems. Adaptations to these changes will require flexible planning t

    Detection of serological biomarkers by proximity extension assay for detection of colorectal neoplasias in symptomatic individuals

    Get PDF
    BACKGROUND: Although the potential of biomarkers to aid in early detection of colorectal cancer (CRC) is recognized and numerous biomarker candidates have been reported in the literature, to date only few molecular markers have been approved for daily clinical use. METHODS: In order to improve the translation of biomarkers from the bench to clinical practice we initiated a biomarker study focusing on a novel technique, the proximity extension assay, with multiplexing capability and the possible additive effect obtained from biomarker panels. We performed a screening of 74 different biomarkers in plasma derived from a case–control sample set consisting of symptomatic individuals representing CRC patients, patients with adenoma, patients with non-neoplastic large bowel diseases and healthy individuals. RESULTS: After statistical evaluation we found 12 significant indicators of CRC and the receiver operating characteristic (ROC) curve of Carcinoembryonic antigen (CEA), Transferrin Receptor-1 (TFRC), Macrophage migration inhibitory factor (MIF), Osteopontin (OPN/SPP1) and cancer antigen 242 (CA242) showed additive effect. This biomarker panel identified CRC patients with a sensitivity of 56% at 90% specificity and thus the performance is sufficiently high to further investigate this combination of five proteins as serological biomarkers for detection of CRC. Furthermore, when applying the indicators to identify early-stage CRC a combination of CEA, TFRC and CA242 resulted in a ROC curve with an area under the curve of 0.861. CONCLUSIONS: Five plasma protein biomarkers were found to be potential CRC discriminators and three of these were additionally found to be discriminators of early-stage CRC. These explorative data in symptomatic individuals demonstrates the feasibility of the multiplex proximity extension assay for screening of potential serological protein biomarkers and warrants independent analyses in a larger sample cohort, including asymptomatic individuals, to further validate the performances of our CRC biomarker panel

    Open Access

    No full text
    Detection of serological biomarkers by proximity extension assay for detection of colorectal neoplasias in symptomatic individual
    corecore