47 research outputs found

    Molecular characterization of resistance to Rifampicin in an emerging hospital-associated Methicillin-resistant Staphylococcus aureus clone ST228, Spain

    Get PDF
    Background: Methicillin-resistant S. aureus (MRSA) has been endemic in Hospital Universitari de Bellvitge, Barcelona, since 1990. During the 1990-95 period the Iberian clone (ST-247; SCCmec-I) was dominant. Isolates of clonal complex 5 (ST-125; SCCmec-IV) gradually replaced the Iberian clone from 1996 to 2003. A new multiresistant MRSA phenotype showing rifampicin resistance emerged in 2004 and rapidly increased from 25% in 2004 to 45% in 2006. The aims of this study were i) the molecular characterisation of rifampicin resistant MRSA isolates, ii) the study of the rifampicin resistance expression by disk diffusion, microdilution and E-test, and iii) the analysis of the rpoB gene mutations involved in rifampicin resistance. Results: A sample of representative 108 rifampicin-resistant MRSA isolates belonged to a single PFGE genotype, ST-228, SCCmec type I and spa type t041. Of 108 isolates, 104 (96%) had a low-level rifampicin resistance (MICs, 2 to 4 mg/L) and 4 a high-level rifampicin resistance (MICs, 128 - ≥ 256 mg/L). Disk diffusion and E-test methods failed to identify a low-level rifampicin resistance in 20 and 12 isolates, respectively. A low-level rifampicin resistance was associated with amino acid substitution 481His/Asn in the beta-subunit of RNA polymerase. Isolates with a high-level rifampicin resistance carried additional mutations in the rpoB gene. Conclusions: The emergence of MRSA clone ST228-SCCmec I, related to the Southern Germany clone, involved a therapeutical challenge for treating serious MRSA infections. Decreased susceptibility to rifampicin in MRSA strains of ST228-SCCmecI was associated with one or two specific mutations in the rpoB gene. One fifth of isolates with low-level rifampicin-resistance were missed by the diffusion methods

    Comparative Genomics and in vitro Infection of Field Clonal Isolates of Brucella melitensis Biovar 3 Did Not Identify Signature of Host Adaptation

    Get PDF
    Brucella spp. are responsible for brucellosis, a widespread zoonosis causing reproductive disorders in animals. Species-classification within this monophyletic genus is based on bacteriological and biochemical phenotyping. Traditionally, Brucella species are reported to have a preferential, but not exclusive mammalian host. However, this concept can be challenged since many Brucella species infect a wide range of animal species. Adaptation to a specific host can be a driver of pathogen variation. It is generally thought that Brucella species have highly stable and conserved genomes, however the degree of genomic variation during natural infection has not been documented. Here, we investigated potential genetic diversity and virulence of Brucella melitensis biovar 3 field isolates obtained from a single outbreak but from different host species (human, bovine, small ruminants). A unique MLVA-16 pattern suggested all isolates were clonal. Comparative genomic analyses showed an almost non-existent genetic diversity among isolates (only one SNP; no architectural rearrangements) and did not highlight any signature specific to host adaptation. Similarly, the strains showed identical capacities to enter and replicate in an in vitro model of macrophage infection. In our study, the absence of genomic variability and similar virulence underline that B. melitensis biovar 3 is a broad-host-range pathogen without the need to adapt to different hosts

    Phenotypic and Molecular Characterization of Brucella microti-Like Bacteria From a Domestic Marsh Frog (Pelophylax ridibundus)

    Get PDF
    Several Brucella isolates have been described in wild-caught and “exotic” amphibians from various continents and identified as B. inopinata-like strains. On the basis of epidemiological investigations conducted in June 2017 in France in a farm producing domestic frogs (Pelophylax ridibundus) for human consumption of frog's legs, potentially pathogenic bacteria were isolated from adults showing lesions (joint and subcutaneous abscesses). The bacteria were initially misidentified as Ochrobactrum anthropi using a commercial identification system, prior to being identified as Brucella spp. by MALDI-TOF assay. Classical phenotypic identification confirmed the Brucella genus, but did not make it possible to conclude unequivocally on species determination. Conventional and innovative bacteriological and molecular methods concluded that the investigated strain was very close to B. microti species, and not B. inopinata-like strains, as expected. The methods included growth kinetic, antimicrobial susceptibility testing, RT-PCR, Bruce-Ladder, Suis-Ladder, RFLP-PCR, AMOS-ERY, MLVA-16, the ectoine system, 16S rRNA and recA sequence analyses, the LPS pattern, in silico MLST-21, comparative whole-genome analyses (including average nucleotide identity ANI and whole-genome SNP analysis) and HRM-PCR assays. Minor polyphasic discrepancies, especially phage lysis and A-dominant agglutination patterns, as well as, small molecular divergences suggest the investigated strain should be considered a B. microti-like strain, raising concerns about its environmental persistence and unknown animal pathogenic and zoonotic potential as for other B. microti strains described to date

    The prevalence of brucellosis and bovine tuberculosis in ruminants in Sidi Kacem Province, Morocco

    Get PDF
    Bovine tuberculosis (BTB) and brucellosis are major endemic zoonoses in ruminants in Morocco that impact on both animal and human health. This study presents an assessment of the epidemiological and socioeconomic burden of bacterial zoonoses in Sidi Kacem Province in Northern Morocco from a cross-sectional survey of 125 cattle and/or small ruminantowning households. In total, 1082 sheep and goats were examined from 81 households. The single intradermal comparative cervical test to screen for bovine tuberculosis was undertaken on 1194 cattle from 123 households and all cattle were blood sampled. Cattle and small ruminant sera were tested for brucellosis using the standard Rose Bengal Test (sRBT) and the modified Rose Bengal Test (mRBT). Bacteriology was performed on 21 milk samples obtained from cattle that were seropositive for brucellosis for isolation and phenotyping of circulating Brucella strains. Individual and herd prevalence for BTB in cattle of 20.4% (95% CI 18%-23%) and 57.7% (95% CI 48%-66%), respectively, were observed in this study. The prevalence of brucellosis in cattle at individual and herd level was 1.9% (95% CI 1.2%-2.8%) and 9% (95% CI 4.5%-1.5%), respectively. Brucella pathogens were isolated from three cattle milk samples and were identified as B. abortus using Bruceladder (R) multiplex PCR and B. abortus biovar 1 by classical phenotyping. All small ruminants were seronegative to sRBT, two were positive to mRBT. A higher risk of BTB and brucellosis was observed in cattle in intensive livestock systems, in imported and crossed breeds and in animals from larger herds (>15). The three risk factors were usually present in the same herds, leading to higher transmission risk and persistence of both zoonoses. These results highlight the importance of implementing control strategies for both BTB and brucellosis to reduce productivity losses and the risk of transmission to humans. Prioritising control for BTB and brucellosis in intensive livestock production systems is essential for human and animal health

    High-Resolution Melting PCR as Rapid Genotyping Tool for Brucella Species

    Full text link
    Brucella sp. are the causative agents of brucellosis. One of the main characteristics of the Brucella genus concerns its very high genetic homogeneity. To date, classical bacteriology typing is still considered as the gold standard assay for direct diagnosis of Brucella. Molecular approaches are routinely used for the identification of Brucella at the genus level. However, genotyping is more complex, and to date, no method exists to quickly assign a strain into species and biovar levels, and new approaches are required. Next generation sequencing (NGS) opened a new era into the diagnosis of bacterial diseases. In this study, we designed a high-resolution melting (HRM) method for the rapid screening of DNA and direct assignment into one of the 12 species of the Brucella genus. This method is based on 17 relevant single nucleotide polymorphisms (SNPs), identified and selected from a whole genome SNP (wgSNP) analysis based on 988 genomes (complete and drafts). These markers were tested against the collection of the European Reference Laboratory (EU-RL) for brucellosis (1440 DNAs extracted from Brucella strains). The results confirmed the reliability of the panel of 17 SNP markers, allowing the differentiation of each species of Brucella together with biovars 1, 2, and 3 of B. suis and vaccine strain Rev1 (B. melitensis) within 3 h, which is a considerable gain of time for brucellosis diagnosis. Therefore, this genotyping tool provides a new and quick alternative for Brucella identification based on SNPs with the HRM-PCR assay

    Comparative Genomics and in vitro Infection of Field Clonal Isolates of Brucella melitensis Biovar 3 Did Not Identify Signature of Host Adaptation

    Full text link
    International audienceBrucella spp. are responsible for brucellosis, a widespread zoonosis causing reproductive disorders in animals. Species-classification within this monophyletic genus is based on bacteriological and biochemical phenotyping. Traditionally, Brucella species are reported to have a preferential, but not exclusive mammalian host. However, this concept can be challenged since many Brucella species infect a wide range of animal species. Adaptation to a specific host can be a driver of pathogen variation. It is generally thought that Brucella species have highly stable and conserved genomes, however the degree of genomic variation during natural infection has not been documented. Here, we investigated potential genetic diversity and virulence of Brucella melitensis biovar 3 field isolates obtained from a single outbreak but from different host species (human, bovine, small ruminants). A unique MLVA-16 pattern suggested all isolates were clonal. Comparative genomic analyses showed an almost non-existent genetic diversity among isolates (only one SNP; no architectural rearrangements) and did not highlight any signature specific to host adaptation. Similarly, the strains showed identical capacities to enter and replicate in an in vitro model of macrophage infection. In our study, the absence of genomic variability and similar virulence underline that B. melitensis biovar 3 is a broad-host-range pathogen without the need to adapt to different hosts
    corecore