63 research outputs found

    Denitrification likely catalyzed by endobionts in an allogromiid foraminifer

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 6 (2012): 951–960, doi:10.1038/ismej.2011.171.Nitrogen can be a limiting macronutrient for carbon uptake by the marine biosphere. The process of denitrification (conversion of nitrate to gaseous compounds, including N2) removes bioavailable nitrogen, particularly in marine sediments, making it a key factor in the marine nitrogen budget. Benthic foraminifera reportedly perform complete denitrification, a process previously considered nearly exclusively performed by bacteria and archaea. If the ability to denitrify is widespread among these diverse and abundant protists, a paradigm shift is required for biogeochemistry and marine microbial ecology. However, to date, the mechanisms of foraminiferal denitrification are unclear and it is possible that the ability to perform complete denitrification is due to symbiont metabolism in some foraminiferal species. Using sequence analysis and GeneFISH, we show that for a symbiont-bearing foraminifer, the potential for denitrification resides in the endobionts. Results also identify the endobionts as denitrifying pseudomonads and show that the allogromiid accumulates nitrate intracellularly, presumably for use in denitrification. Endobionts have been observed within many foraminiferal species, and in the case of associations with denitrifying bacteria, may provide fitness for survival in anoxic conditions. These associations may have been a driving force for early foraminiferal diversification, which is thought to have occurred in the Neoproterozoic when anoxia was widespread.This research was supported by NSF grant EF-0702491 to JMB, KLC and VPE; some ship support was provided by NSF MCB-0604084 to VPE and JMB.2012-06-0

    Caldinitratiruptor microaerophilus, gen. nov., sp. nov. isolated from a French hot spring (Chaudes-Aigues, Massif Central) : a novel cultivated facultative microaerophilic anaerobic thermophile pertaining to the Symbiobacterium branch within the Firmicutes

    Full text link
    A novel facultative microaerophilic nitrate-reducing bacterium designated CA62N(T) was isolated from a thermal spring in France. Cells were non-motile rods (2-3 x 0.2 mu m) and showed low cytoplasmic density when observed under a phase-contrast microscope. Strain CA62N(T) grew at temperatures between 50 and 75A degrees C (optimum 65A degrees C) and at a pH between 6.3 and 7.9 (optimum 7.0). NaCl was not required for growth but was tolerated up to 10 gl(-1). Sulfate, thiosulfate, elemental sulfur, sulfite, and nitrite were not used as electron acceptors. Nitrate was reduced to nitrite. Strain CA62N(T) used lactate, pyruvate, glucose, mannose, fructose, and casamino acids and some amino acids as electron donors only in the presence of nitrate as electron acceptor. None of these substrates was fermented. The main end-products of glucose oxidation were acetate, CO2, and traces of H-2. The G + C content of the genomic DNA was 70.3 mol% (HPLC techniques). Phylogenetic analysis of the small-subunit (SSU) ribosomal RNA (rRNA) gene sequence indicated that strain CA62N(T) was affiliated to the Symbiobacterium branch within the Firmicutes and had Symbiobacterium thermophilum and "S. toebii" as its closest phylogenetic relatives. On the basis of phylogenetical and physiological characteristics, strain CA62N(T) is proposed to be the type strain for the novel species in the novel genus, Caldinitratiruptor microaerophilus gen. nov., sp. nov. (DSM 22660, JCM 16183)

    Ecological significance of Synergistetes in the biological treatment of tuna cooking wastewater by an anaerobic sequencing batch reactor

    Full text link
    Lab-scale 2L-anaerobic sequencing batch reactor was operated under mesothermic conditions. The degradation of protein-rich organic matter was determined by chemical oxygen demand, biogas production, and protein-removal activity over the operation. The structure of the microbial community was determined by qPCR and next-generation sequencing on 16S rRNA genes. At the steady state, a very efficient removal of protein (92 %) was observed. Our results demonstrate a decrease of archaeal and bacterial abundance over time. Members of the phylum Synergistetes, with a peculiar emphasis for those pertaining to families Dethiosulfovibrionaceae and Aminiphilaceae, are of major ecological significance regarding the treatment of this industrial wastewater. The prominent role to be played by members of the phylum Synergistetes regarding protein and/or amino acid degradation is discussed

    Aerobic and anaerobic metabolism of 6,10,14-trimethylpentadecan-2-one by a denitrifying bacterium isolated from marine sediments.

    Full text link
    This report describes the metabolism of 6,10,14-trimethylpentadecan-2-one by a denitrifying bacterium (Marinobacter sp. strain CAB) isolated from marine sediments. Under aerobic and denitrifying conditions, this strain efficiently degraded this ubiquitous isoprenoid ketone. Several bacterial metabolites, 4,8,12-trimethyl-tridecan-1-ol, 4,8,12-trimethyltridecanal, 4,8,12-trimethyltridecanoic acid, Z-3,7-dimethylocten-2-oic acid, Z-3,7,11-trimethyldodecen-2-oic acid, and 6,10,14-trimethylpentadecan-2-ol, were formally identified, and different pathways were proposed to explain the formation of such isoprenoid compounds

    Isolation and characterization of Thermanaerothrix daxensis gen. nov., sp. nov., a thermophilic anaerobic bacterium pertaining to the phylum Chloroflexi, isolated from a deep hot aquifer in the Aquitaine basin

    Full text link
    A new strictly anaerobic thermophilic multicellular filamentous bacterium (0.2-0.3 mu m x > 100 mu m), designated GNS-1(T), was isolated from a deep hot aquifer in France. It was non-motile, and stained Gram-negative. Optimal growth was observed at 65 degrees C, pH 7.0, and 2 g L-1 of NaCl. Strain GNS-1(T) was chemoorganotrophic fermenting ribose, glucose, galactose, arabinose, fructose, mannose, maltose, sucrose, xylose, raffinose, pyruvate, and xylan. Yeast extract was required for growth. The end products of glucose fermentation were lactate, acetate, CO2, and H-2. The G + C content of the DNA was 57.6 mol%. Its closest phylogenetic relative was Bellilinea caldifistulae with 92.5% similarity. Based on phylogenetic, genotypic and phenotypic characteristics, strain GNS-1(T) (DSM 23592(T), JCM 169801) is proposed to be assigned to a novel species of a novel genus within the class Anaerolineae (subphylum I), phylum "Chloroflexi". Thermanaerothrix daxensis gen. nov., sp. nov. The GenBank accession number is HM596746
    corecore