41 research outputs found

    Probing synergies between lignin-rich and cellulose compounds for gasification

    Get PDF
    The fixed bed gasification of lignin rich and deficient mixtures was carried out to probe the synergistic effects between two model compounds, Lignin Pink (LP) rich in Na and Cellulose Microcrystalline (CM). Reaction conditions utilized the most commonly used air ratios in current wood gasifiers at 750 °C and 850 °C. It was found that by increasing the lignin content in the mixture, there was a selectivity change from solid to gas products, contrary to a similar study previously carried out for pyrolysis. This change in product mix was promoted by the catalytic effect of Na edge recession deposits on the surface of the char. As a result, the water gas shift reaction was enhanced at 850 °C for the LP48CM52 mixture across all air ratios, this was evidenced by a strong correlation between the produced H2 and COx. Meanwhile, by lowering the lignin content in the mixtures, the reactivity of cellulose microcrystalline was found to generate more char at higher temperature, similar to lignin mixtures when undergoing pyrolysis

    A multidisciplinary approach for an effective and rational energy transition in Crete Island, Greece.

    Get PDF
    This article proposes a mixture of actions for the development of an effective and rational energy transition plan for all sectors and for all types of onshore final energy use in Crete. Energy transition is initiated with an appropriate capacity building campaign. The plan is based on the introduction of energy saving measures and the exploitation of all the locally available energy resources (wind, solar, geothermal potential, biomass), integrated in a cluster of centralized and decentralized power plants and smart grids to produce electricity and heat and for the transition to e-mobility. The core of the energy transition in Crete will be a set of 14 wind parks and Pumped Hydro Storage systems (PHS) for electricity generation and 12 Combined Heat and Power plants, properly designed and dispersed in the insular territory. Economic analysis is executed for the proposed essential power plants on the island. Biomass, solar and geothermal potential can cover the heating demand in Crete several times. Heat can be produced with a specific cost of 0.05 EUR/kWhth from cogeneration plants fired with solid biomass and biogas. The wind parks-PHS systems exhibit payback periods of approximately 10 years with a final electricity selling price at 0.12 EUR/kWhel. The article shows that 100% energy transition in Crete constitutes a feasible target

    The influence of a vertical ground heat exchanger length on the electricity consumption of the heat pumps

    Full text link
    The use of heat pumps combined with vertical ground heat exchangers for heating and cooling of buildings, has significantly gained popularity in recent years. The design method for these systems, as it is proposed by ASHRAE, is taking into account the maximum thermal and cooling loads of the building, the thermophysical properties of the soil at the area of installation and a minimum Coefficient of Performance (COP) of the heat pumps. This approach usually results in larger than needed length of the ground heat exchanger, thus increasing the installation cost. A new analytical simulation tool, capable to determine the required ground heat exchanger length has been developed at the Process Equipment Design Laboratory (PEDL) of the AUTh. It models the function of the system as a whole over long time periods, e.g. 20 years, using as input parameters the thermal and cooling loads of the building, the thermophysical properties of the borehole and the characteristic curves of the heat pumps. The results include the electricity consumption of the heat pumps and the heat absorbed from or rejected to the ground. The aim of this paper is to describe the developed simulation algorithm and present the results of such a simulation in a case study. It is proved that the total required length of the ground heat exchanger is less than that calculated using the common numerical method

    Predicting the fluid temperature at the exit of the vertical ground heat exchangers

    Full text link
    The energy analysis of ground source heat pump systems is based on the instantaneous fluid temperature at the ground heat exchanger outlet. This temperature defines the ground source heat pump coefficient of performance (COP) and hence the electricity consumption required in order to fulfill the energy demands of the building. The aim of this work is to present a model able to predict the fluid temperature at the ground heat exchanger outlet, taking into account the heat transfer phenomena in the soil and the temporal variation of the thermal load of the ground heat exchanger. The model developed was verified using experimental data, expanding over a three years period, of a vertical ground heat exchanger. It is proved that the model is able to satisfactorily predict the recorded temperature values throughout the verification period. The differences between measured and estimated outlet water temperatures impose a deviation between the estimated and the actually recorded electricity consumption of less than 4%

    A new energy analysis tool for ground source heat pump systems

    Full text link
    A new tool, suitable for energy analysis of vertical ground source heat pump systems, is presented. The tool is based on analytical equations describing the heat exchanged with the ground, developed in Matlab® environment. The time step of the simulation can be freely chosen by the user (e.g. 1, 2 h etc.) and the calculation time required is very short. The heating and cooling loads of the building, at the afore mentioned time step, are needed as input, along with the thermophysical properties of the soil and of the ground heat exchanger, the operation characteristic curves of the system's heat pumps and the basic ground source heat exchanger dimensions. The results include the electricity consumption of the system and the heat absorbed from or rejected to the ground. The efficiency of the tool is verified through comparison with actual electricity consumption data collected from an existing large scale ground coupled heat pump installation over a three-year period

    Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger

    Full text link
    This article reports on the performance of a ground source heat pump system installed in a New Municipality Hall in Northern Greece over an eight-year operation period. The system consists of a vertical ground heat exchanger, 21 boreholes in 80 m depth, 11 water-to-water heat pump units. Basic parameters of its operation are continuously monitoring by a data acquisition system. Based on these recordings, heat transfer flows from/to the building and the ground were calculated in order to estimate the performance of the system. It is found that the maximum ground heat exchanger load reaches 50 W/m in heating operation while in cooling mode it ranges between 20 and 210 W/m. The Weekly Performance Factor of the heat pumps as well as the Seasonal Energy Efficiency Ratio were found to be between 5.0–6.2 and 4.5–5.5 in heating mode and 4.1–5.9 and 3.6–4.5 in cooling mode, respectively. Compared to a conventional heating and cooling system for this building, the ground source heat pump consumes 25.7% less primary energy and emits lower CO2 and NOx emissions by 22.7% and 99.6% respectively, but its SO2 emissions are 18.4% higher

    On the maximum thermal load of ground heat exchangers

    Full text link
    Abstract Ground heat exchanger (GHE) coupled heat pumps constitute an alternative system for the air conditioning of buildings, with the vertical U-tube type being the most popular. The installation cost and the overall performance of the system strongly depends on the designing and dimensioning, which however present significant difficulties. The critical parameter in designing vertical systems is the thermal power per meter of borehole that the GHE can handle. This paper presents a calculation algorithm, which aims to redefine the maximum thermal load allowable in vertical ground heat exchangers.

    Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger

    Full text link
    This article reports on the performance of a ground source heat pump system installed in a New Municipality Hall in Northern Greece over an eight-year operation period. The system consists of a vertical ground heat exchanger, 21 boreholes in 80 m depth, 11 water-to-water heat pump units. Basic parameters of its operation are continuously monitoring by a data acquisition system. Based on these recordings, heat transfer flows from/to the building and the ground were calculated in order to estimate the performance of the system. It is found that the maximum ground heat exchanger load reaches 50 W/m in heating operation while in cooling mode it ranges between 20 and 210 W/m. The Weekly Performance Factor of the heat pumps as well as the Seasonal Energy Efficiency Ratio were found to be between 5.0–6.2 and 4.5–5.5 in heating mode and 4.1–5.9 and 3.6–4.5 in cooling mode, respectively. Compared to a conventional heating and cooling system for this building, the ground source heat pump consumes 25.7% less primary energy and emits lower CO2 and NOx emissions by 22.7% and 99.6% respectively, but its SO2 emissions are 18.4% higher
    corecore