19 research outputs found

    Association between moral distress and job satisfaction of Japanese psychiatric nurses

    Full text link
    Moral distress of psychiatric nurses may affect their job satisfaction or quality of nursing care, thus examination of their moral distress is a significant issue for practice. The purpose of this study was to investigate the level of moral distress and job satisfaction, and association between moral distress and job satisfaction. One hundred and thirty nurses who worked in psychiatric wards in a hospital in Japan completed the Moral Distress Scale for psychiatric nurses (MDS-P) and the Job Satisfaction scale (JS). The MDS-P consisted of subdomains such as “unethical conduct by caregivers,” “low staffing,” and “acquiescence to violations of patients’ rights” in intensity and frequency; the JS consisted of seven subcategories. An institutional review board in the researcher’s college approved this study. Results showed that the “acquiescence to violations of patients’ rights” was the highest of the subdomains of MDS-P, and the “interactions among nurses” was the highest of the subdomains of the JS. The unethical conduct by caregivers (MDS-P) score was negatively correlated with administration (JS) for intensity (r = -.40, p \u3c .001) and frequency (r = .37, p \u3c .001). Moreover “acquiescence to violations of patients’ rights (MDS-P)” was also negatively correlated with the “task requirement (JS)” score for intensity (r = -0.49, p \u3c .001) and for frequency (r = -0.50, p \u3c .001). These results suggest that reduction of moral distress increases job satisfaction particularly for administration and task requirement in nursing care

    Comprehensive analysis of liver and blood miRNA in precancerous conditions

    Get PDF
    Streptozotocin administration to mice (STZ-mice) induces type I diabetes and hepatocellular carcinoma (HCC). We attempted to elucidate the carcinogenic mechanism and the miRNA expression status in the liver and blood during the precancerous state. Serum and liver tissues were collected from STZ-mice and non-treated mice (CTL-mice) at 6, 10, and 12 W. The exosome enriched fraction extracted from serum was used. Hepatic histological examination and hepatic and exosomal miRNA expression analysis were serially performed using next-generation sequencing (NGS). Human miRNA expression analysis of chronic hepatitis liver tissue and exosomes, which were collected before starting the antiviral treatment, were also performed. No inflammation or fibrosis was found in the liver of CTL-mice during the observation period. In STZ-mice, regeneration and inflammation of hepatocytes was found at 6 W and nodules of atypical hepatocytes were found at 10 and 12 W. In the liver tissue, during 6–12 W, the expression levels of let-7f-5p, miR-143-3p, 148a-3p, 191-5p, 192-5p, 21a-5p, 22-3p, 26a-5p, and 92a-3p was significantly increased in STZ-mice, and anti-oncogenes of their target gene candidates were down-regulated. miR-122-5p was also significantly down-regulated in STZ-mice. Fifteen exosomal miRNAs were upregulated in STZ-mice. Six miRNAs (let-7f-5p, miR-10b-5p, 143-3p, 191-5p, 21a-5p, and 26a-5p) were upregulated, similarly to human HCC cases. From the precancerous state, aberrant expression of hepatic miRNAs has already occurred, and then, it can promote carcinogenesis. In exosomes, the expression pattern of common miRNAs between mice and humans before carcinogenesis was observed and can be expected to be developed as a cancer predictive marker

    Analysis of essential pathways for self-renewal in common marmoset embryonic stem cells

    Get PDF
    Common marmoset (CM) is widely recognized as a useful non-human primate for disease modeling and preclinical studies. Thus, embryonic stem cells (ESCs) derived from CM have potential as an appropriate cell source to test human regenerative medicine using human ESCs. CM ESCs have been established by us and other groups, and can be cultured in vitro. However, the growth factors and downstream pathways for self-renewal of CM ESCs are largely unknown. In this study, we found that basic fibroblast growth factor (bFGF) rather than leukemia inhibitory factor (LIF) promoted CM ESC self-renewal via the activation of phosphatidylinositol-3-kinase (PI3K)-protein kinase B (AKT) pathway on mouse embryonic fibroblast (MEF) feeders. Moreover, bFGF and transforming growth factor β (TGFβ) signaling pathways cooperatively maintained the undifferentiated state of CM ESCs under feeder-free condition. Our findings may improve the culture techniques of CM ESCs and facilitate their use as a preclinical experimental resource for human regenerative medicine

    Malnutrition in Alzheimer's Disease, Dementia with Lewy Bodies, and Frontotemporal Lobar Degeneration: Comparison Using Serum Albumin, Total Protein, and Hemoglobin Level.

    No full text
    Malnutrition among dementia patients is an important issue. However, the biochemical markers of malnutrition have not been well studied in this population. The purpose of this study was to compare biochemical blood markers among patients with Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and frontotemporal lobar degeneration (FTLD). A total of 339 dementia outpatients and their family caregivers participated in this study. Low serum albumin was 7.2 times more prevalent among patients with DLB and 10.1 times more prevalent among those with FTLD than among those with AD, with adjustment for age. Low hemoglobin was 9.1 times more common in female DLB patients than in female AD patients, with adjustment for age. The levels of biochemical markers were not significantly correlated with cognitive function. Family caregivers of patients with low total protein, low albumin, or low hemoglobin were asked if the patients had loss of weight or appetite; 96.4% reported no loss of weight or appetite. In conclusion, nutritional status was worse in patients with DLB and FTLD than in those with AD. A multidimensional approach, including blood testing, is needed to assess malnutrition in patients with dementia

    Irradiation Prolongs Survival of Alport Mice

    No full text
    Alport syndrome is a hereditary nephropathy that results in irreversible, progressive renal failure. Recent reports suggested that bone marrow transplantation (BMT) has a beneficial, short-term effect on renal injury in Alport (Col4a3−/−) mice, but its long-term effects, especially with regard to survival, are unknown. In this study, Alport mice received a transplant of either wild-type or Col4a3−/− bone marrow cells. Surprising, laboratory evaluations and renal histology demonstrated similar findings in both transplanted groups. Transplanted cells accounted for >10% of glomerular cells at 8 wk, but type IV collagen α3 chains were not detected in glomerular basement membranes of either group by immunofluorescence or Western blot analysis, although Col4a3 mRNA in the kidney could be amplified by reverse transcription–PCR in knockout mice that received a transplant of wild-type bone marrow. Both transplanted groups, however, survived approximately 1.5 times longer than untreated knockout mice (log rank P < 0.05). These data suggested that irradiation, which preceded BMT, may have conferred a survival benefit; therefore, the survival time of knockout mice was assessed after sublethal irradiation (3, 6, and 7 Gy) without subsequent BMT. A strong positive correlation between irradiation dosage and survival time was identified (P < 0.0001). In conclusion, the improved survival observed in Alport mice that received a transplant of wild-type bone marrow might be primarily attributed to as-yet-unidentified effects of irradiation
    corecore