20 research outputs found

    Chk2 and p53 Are Haploinsufficient with Dependent and Independent Functions to Eliminate Cells after Telomere Loss

    Get PDF
    The mechanisms that cells use to monitor telomere integrity, and the array of responses that may be induced, are not fully defined. To date there have been no studies in animals describing the ability of cells to survive and contribute to adult organs following telomere loss. We developed assays to monitor the ability of somatic cells to proliferate and differentiate after telomere loss. Here we show that p53 and Chk2 limit the growth and differentiation of cells that lose a telomere. Furthermore, our results show that two copies of the genes encoding p53 and Chk2 are required for the cell to mount a rapid wildtype response to a missing telomere. Finally, our results show that, while Chk2 functions by activating the p53-dependent apoptotic cascade, Chk2 also functions independently of p53 to limit survival. In spite of these mechanisms to eliminate cells that have lost a telomere, we find that such cells can make a substantial contribution to differentiated adult tissues

    Inversion by P4: polarization-picture post-processing

    No full text
    Polarization may be sensed by imaging modules. This is done in various engineering systems as well as in biological systems, specifically by insects and some marine species. However, polarization per pixel is usually not the direct variable of interest. Rather, polarization-related data serve as a cue for recovering task-specific scene information. How should polarization-picture post-processing (P4) be done for the best scene understanding? Answering this question is not only helpful for advanced engineering (computer vision), but also to prompt hypotheses as to the processing occurring within biological systems. In various important cases, the answer is found by a principled expression of scene recovery as an inverse problem. Such an expression relies directly on a physics-based model of effects in the scene. The model includes analysis that depends on the different polarization components, thus facilitating the use of these components during the inversion, in a proper, even if non-trivial, manner. We describe several examples for this approach. These include automatic removal of path radiance in haze or underwater, overcoming partial semireflections and visual reverberations; three-dimensional recovery and distance-adaptive denoising. The resulting inversion algorithms rely on signal-processing methods, such as independent component analysis, deconvolution and optimization

    Mechanisms and behavioural functions of structural coloration in cephalopods

    No full text
    Octopus, squid and cuttlefish are renowned for rapid adaptive coloration that is used for a wide range of communication and camouflage. Structural coloration plays a key role in augmenting the skin patterning that is produced largely by neurally controlled pigmented chromatophore organs. While most iridescence and white scattering is produced by passive reflectance or diffusion, some iridophores in squid are actively controlled via a unique cholinergic, non-synaptic neural system. We review the recent anatomical and experimental evidence regarding the mechanisms of reflection and diffusion of light by the different cell types (iridophores and leucophores) of various cephalopod species. The structures that are responsible for the optical effects of some iridophores and leucophores have recently been shown to be proteins. Optical interactions with the overlying pigmented chromatophores are complex, and the recent measurements are presented and synthesized. Polarized light reflected from iridophores can be passed through the chromatophores, thus enabling the use of a discrete communication channel, because cephalopods are especially sensitive to polarized light. We illustrate how structural coloration contributes to the overall appearance of the cephalopods during intra- and interspecific behavioural interactions including camouflage
    corecore