2,326 research outputs found
Critical neural networks with short and long term plasticity
In recent years self organised critical neuronal models have provided
insights regarding the origin of the experimentally observed avalanching
behaviour of neuronal systems. It has been shown that dynamical synapses, as a
form of short-term plasticity, can cause critical neuronal dynamics. Whereas
long-term plasticity, such as hebbian or activity dependent plasticity, have a
crucial role in shaping the network structure and endowing neural systems with
learning abilities. In this work we provide a model which combines both
plasticity mechanisms, acting on two different time-scales. The measured
avalanche statistics are compatible with experimental results for both the
avalanche size and duration distribution with biologically observed percentages
of inhibitory neurons. The time-series of neuronal activity exhibits temporal
bursts leading to 1/f decay in the power spectrum. The presence of long-term
plasticity gives the system the ability to learn binary rules such as XOR,
providing the foundation of future research on more complicated tasks such as
pattern recognition.Comment: 8 pages, 7 figure
Role of lysozyme inhibitors in the virulence of avian pathogenic Escherichia coli
Lysozymes are key effectors of the animal innate immunity system that kill bacteria by hydrolyzing peptidoglycan, their major cell wall constituent. Recently, specific inhibitors of the three major lysozyme families occuring in the animal kingdom (c-, g- and i-type) have been discovered in Gram-negative bacteria, and it has been proposed that these may help bacteria to evade lysozyme mediated lysis during interaction with an animal host. Escherichia coli produces two inhibitors that are specific for c-type lysozyme (Ivy, Inhibitor of vertebrate lysozyme; MliC, membrane bound lysozyme inhibitor of c-type lysozyme), and one specific for g-type lysozyme (PliG, periplasmic lysozyme inhibitor of g-type lysozyme). Here, we investigated the role of these lysozyme inhibitors in virulence of Avian Pathogenic E. coli (APEC) using a serum resistance test and a subcutaneous chicken infection model. Knock-out of mliC caused a strong reduction in serum resistance and in in vivo virulence that could be fully restored by genetic complementation, whereas ivy and pliG could be knocked out without effect on serum resistance and virulence. This is the first in vivo evidence for the involvement of lysozyme inhibitors in bacterial virulence. Remarkably, the virulence of a ivy mliC double knock-out strain was restored to almost wild-type level, and this strain also had a substantial residual periplasmic lysozyme inhibitory activity that was higher than that of the single knock-out strains. This suggests the existence of an additional periplasmic lysozyme inhibitor in this strain, and indicates a regulatory interaction in the expression of the different inhibitors
Effects of precision farming, N rate, and temporal trends on wheat yield and productivity
Non-Peer Reviewe
Theoretical Considerations on the Effect of Ion Formation Conditions on the Transmission Through a Laser Microprobe Mass Analyzer
A theoretical study on the ion transmission through the laser microprobe mass analyzer LAMMA 500 was made using ray-tracing computer programs. The calculations reveal that the ion transmission is strongly affected by the initial conditions of ion formation. Chromatic and spherical aberrations give rise to considerable discrimination in the univoltage lens.
A correlation is attempted between measured and theoretical transmission curves. For the latter a physically plausible plasma model was initially assumed to generate the input parameters, i.e., locus of ion formation and angular and energy distributions of the ions (atomic and cluster ions).
The model needs correction for aberration and space-charge effects : comparison of experimental and calculated ion transmission curves suggests, indeed, a more important contribution of particles with high energy and emitted under large angles, than initially assumed
Variação da condutividade hidráulica do solo não saturado determinada em condições de campo utilizando análises simplificadas de experimentos de drenagem interna
Experimentally determined values of unsaturated soil hydraulic conductivity are presented for an Alfisol of the county of Piracicaba, S.P., Brazil. Simultaneous measurements of soil water content and pressure head are made along a 125 m transect within an irrigated field during the internal drainage process. Calculations of the soil hydraulic conductivity were made using the instantaneous profile method (Watson, 1966) and the unit gradient method (LIBARDI et al., 1980). The spatial variability of the soil hydraulic conductivity manifested along the transect indicates the need to develop a field method to measure K(theta) within prescribed fiducial limits, taking into account quantitative evaluation of spatial and temporal variances associated with the mathematical model, instrument calibration and soil properties.São apresentados dados experimentais de condutividade hidráulica do solo, para unà Alfisol (terra roxa estruturada) do MunicÃpio de Piracicaba,SP - Brasil. Medidas simultâneas de umidade do solo e de potencial total da água no solo foram realizadas ao longo de uma transeção de 125 m, dentro de um campo irrigado, durante o processo de drenagem interna. Os cálculos de condutividade hidráulica foram feitos utilizando o método do perfil instantâneo (WATSON, 1966) e o método do gradiente unitário (LIBARDI et al., 1980). A variabilidade espacial da condutividade hidráulica do solo observada ao longo da transeção aponta a necessidade do desenvolvimento de método de campo para a medida de K (teta) dentro de limites preestabelecidos de precisão, levando em conta a medida quantitativa das variâncias temporal e espacial associadas ao modelo matemático, a calibração dos instrumentos e as propriedades do solo
Excitation dynamics in polyacene molecules on rare-gas clusters
Laser-induced fluorescence spectra and excitation lifetimes of anthracene, tetracene, and pentacene molecules attached to the surface of solid argon clusters have been measured with respect to cluster size, density of molecules, and excitation density. Results are compared to previous studies on the same sample molecules attached to neon clusters. A contrasting lifetime behavior of anthracene on neon and argon clusters is discussed, and mechanisms are suggested to interpret the results. Although both neon and argon clusters are considered to be weakly interacting environments, we find that the excitation decay dynamics of the studied acenes depends significantly on the cluster material. Moreover, we find even qualitative differences regarding the dependence on the dopant density. Based on these observations, previous assignments of collective radiative and non-radiative decay mechanisms are discussed in the context of the new experimental findings.& nbsp;(c) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
Real-time dynamics of the formation of hydrated electrons upon irradiation of water clusters with extreme ultraviolet light
Free electrons in a polar liquid can form a bound state via interaction with the molecular environment. This so-called hydrated electron state in water is of fundamental importance e.g.~in cellular biology or radiation chemistry. Hydrated electrons are highly reactive radicals that can either directly interact with DNA or enzymes, or form highly excited hydrogen (H∗) after being captured by protons. Here, we investigate the formation of the hydrated electron in real-time employing XUV femtosecond pulses from a free electron laser, in this way observing the initial steps of the hydration process. Using time-resolved photoelectron spectroscopy we find formation timescales in the low picosecond range and resolve the prominent dynamics of forming excited hydrogen states
Genome-wide detection of predicted non-coding RNAs in Rhizobium etli expressed during free-living and host-associated growth using a high-resolution tiling array
Non-coding RNAs (ncRNAs) play a crucial role in the intricate regulation of bacterial gene expression, allowing bacteria to quickly adapt to changing environments. In the past few years, a growing number of regulatory RNA elements have been predicted by computational methods, mostly in well-studied gamma-proteobacteria but lately in several alpha-proteobacteria as well. Here, we have compared an extensive compilation of these non-coding RNA predictions to intergenic expression data of a whole-genome high-resolution tiling array in the soil-dwelling alpha-proteobacterium Rhizobium etli.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
- …