248 research outputs found
Capture numbers and islands size distributions in models of submonolayer surface growth
The capture numbers entering the rate equations (RE) for submonolayer film
growth are determined from extensive kinetic Monte Carlo (KMC) simulations for
simple representative growth models yielding point, compact, and fractal island
morphologies. The full dependence of the capture numbers on island size, and on
both the coverage and the D/F ratio between the adatom diffusion coefficient D
and deposition rate F is determined. Based on this information, the RE are
solved to give the RE island size distribution (RE-ISD). The RE-ISDs are shown
to agree well with the corresponding KMC-ISDs for all island morphologies. For
compact morphologies, however, this agreement is only present for coverages
smaller than about 5% due to a significantly increased coalescence rate
compared to fractal morphologies. As found earlier, the scaled KMC-ISDs as a
function of scaled island size approach, for fixed coverage, a limiting curve
for D/F going to infinity. Our findings provide evidence that the limiting
curve is independent of the coverage for point islands, while the results for
compact and fractal island morphologies indicate a dependence on the coverage.Comment: 13 pages, 12 figure
Spiral Growth and Step Edge Barriers
The growth of spiral mounds containing a screw dislocation is compared to the
growth of wedding cakes by two-dimensional nucleation. Using phase field
simulations and homoepitaxial growth experiments on the Pt(111) surface we show
that both structures attain the same characteristic large scale shape when a
significant step edge barrier suppresses interlayer transport. The higher
vertical growth rate observed for the spiral mounds on Pt(111) reflects the
different incorporation mechanisms for atoms in the top region and can be
formally represented by an enhanced apparent step edge barrier.Comment: 11 pages, 4 figures, partly in colo
Re-entrant Layer-by-Layer Etching of GaAs(001)
We report the first observation of re-entrant layer-by-layer etching based on
{\it in situ\/} reflection high-energy electron-diffraction measurements. With
AsBr used to etch GaAs(001), sustained specular-beam intensity oscillations
are seen at high substrate temperatures, a decaying intensity with no
oscillations at intermediate temperatures, but oscillations reappearing at
still lower temperatures. Simulations of an atomistic model for the etching
kinetics reproduce the temperature ranges of these three regimes and support an
interpretation of the origin of this phenomenon as the site-selectivity of the
etching process combined with activation barriers to interlayer adatom
migration.Comment: 11 pages, REVTeX 3.0. Physical Review Letters, in press
К вопросу состава гранатов во вмещающих породах и рудах месторождения Эльдорадо
На основании изучения гранатов во вмещающих породах и рудах месторождения Эльдорадо сделан вывод о том, что формирование его происходило на фоне падающих температур и давлений
Island size distributions in submonolayer growth: successful prediction by mean field theory with coverage dependent capture numbers
We show that mean-field rate equations for submonolayer growth can
successfully predict island size distributions in the pre-coalescence regime if
the full dependence of capture numbers on both the island size and the coverage
is taken into account. This is demonstrated by extensive Kinetic Monte Carlo
simulations for a growth kinetics with hit and stick aggregation. A detailed
analysis of the capture numbers reveals a nonlinear dependence on the island
size for small islands. This nonlinearity turns out to be crucial for the
successful prediction of the island size distribution and renders an analytical
treatment based on a continuum limit of the mean-field rate equations
difficult.Comment: 4 pages, 4 figue
Two Dimensional Ir-Cluster Lattices on Moir\'e of Graphene with Ir(111)
Lattices of Ir clusters have been grown by vapor phase deposition on graphene
moir\'{e}s on Ir(111). The clusters are highly ordered, spatially and thermally
stable below 500K. Their narrow size distribution is tunable from 4 to about
130 atoms. A model for cluster binding to the graphene is presented based on
scanning tunneling microscopy and density functional theory. The proposed
binding mechanism suggests that similar cluster lattices might be grown of
materials other than Ir.Comment: Submitted to PRL on 27Apr0
Spiral Growth and Step Edge Barriers
The growth of spiral mounds containing a screw dislocation is compared to the
growth of wedding cakes by two-dimensional nucleation. Using phase field
simulations and homoepitaxial growth experiments on the Pt(111) surface we show
that both structures attain the same characteristic large scale shape when a
significant step edge barrier suppresses interlayer transport. The higher
vertical growth rate observed for the spiral mounds on Pt(111) reflects the
different incorporation mechanisms for atoms in the top region and can be
formally represented by an enhanced apparent step edge barrier.Comment: 11 pages, 4 figures, partly in colo
Coarsening scenarios in unstable crystal growth
Crystal surfaces may undergo thermodynamical as well kinetic,
out-of-equilibrium instabilities. We consider the case of mound and pyramid
formation, a common phenomenon in crystal growth and a long-standing problem in
the field of pattern formation and coarsening dynamics. We are finally able to
attack the problem analytically and get rigorous results. Three dynamical
scenarios are possible: perpetual coarsening, interrupted coarsening, and no
coarsening. In the perpetual coarsening scenario, mound size increases in time
as L=t^n, where the coasening exponent is n=1/3 when faceting occurs, otherwise
n=1/4.Comment: Changes in the final part. Accepted for publication in Phys. Rev.
Let
Breakdown of step-flow growth in unstable homoepitaxy
Two mechanisms for the breakdown of step flow growth, in the sense of the
appearance of steps of opposite sign to the original vicinality, are studied by
kinetic Monte Carlo simulations and scaling arguments. The first mechanism is
the nucleation of islands on the terraces, which leads to mound formation if
interlayer transport is sufficiently inhibited. The second mechanism is the
formation of vacancy islands due to the self-crossing of strongly meandering
steps. The competing roles of the growth of the meander amplitude and the
synchronization of the meander phase are emphasized. The distance between
vacancy islands along the step direction appears to be proportional to the
square of the meander wavelengthComment: 7 pages, 9 figure
Loss of control in pattern-directed nucleation: a theoretical study
The properties of template-directed nucleation are studied close to the
transition where full nucleation control is lost and additional nucleation
occurs beyond the pre-patterned regions. First, kinetic Monte Carlo simulations
are performed to obtain information on a microscopic level. Here the
experimentally relevant cases of 1D stripe patterns and 2D square lattice
symmetry are considered. The nucleation properties in the transition region
depend in a complex way on the parameters of the system, i.e. the flux, the
surface diffusion constant, the geometric properties of the pattern and the
desorption rate. Second, the properties of the stationary concentration field
in the fully controlled case are studied to derive the remaining nucleation
probability and thus to characterize the loss of nucleation control. Using the
analytically accessible solution of a model system with purely radial symmetry,
some of the observed properties can be rationalized. A detailed comparison to
the Monte Carlo data is included
- …