25 research outputs found
Shortened Telomere Length in White Matter Oligodendrocytes in Major Depression: Potential Role of Oxidative Stress
Telomere shortening is observed in peripheral mononuclear cells from patients with major depressive disorder (MDD). Whether this finding and its biological causes impact the health of the brain in MDD is unknown. Brain cells have differing vulnerabilities to biological mechanisms known to play a role in accelerating telomere shortening. Here, two glia cell populations (oligodendrocytes and astrocytes) known to have different vulnerabilities to a key mediator of telomere shortening, oxidative stress, were studied. The two cell populations were separately collected by laser capture micro-dissection of two white matter regions shown previously to demonstrate pathology in MDD patients. Cells were collected from brain donors with MDD at the time of death and age-matched psychiatrically normal control donors (N=12 donor pairs). Relative telomere lengths in white matter oligodendrocytes, but not astrocytes, from both brain regions were significantly shorter for MDD donors as compared to matched control donors. Gene expression levels of telomerase reverse transcriptase were significantly lower in white matter oligodendrocytes from MDD as compared to control donors. Likewise, the gene expression of oxidative defence enzymes superoxide dismutases (SOD1 and SOD2), catalase (CAT) and glutathione peroxidase (GPX1) were significantly lower in oligodendrocytes from MDD as compared to control donors. No such gene expression changes were observed in astrocytes from MDD donors. These findings suggest that attenuated oxidative stress defence and deficient telomerase contribute to telomere shortening in oligodendrocytes in MDD, and suggest an aetiological link between telomere shortening and white matter abnormalities previously described in MDD
Neuroinflammatory Gene Expression Alterations in Anterior Cingulate Cortical White and Gray Matter of Males With Autism Spectrum Disorder
Evidence for putative pathophysiological mechanisms of autism spectrum disorder (ASD), including peripheral inflammation, blood–brain barrier disruption, white matter alterations, and abnormal synaptic overgrowth, indicate a possible involvement of neuroinflammation in the disorder. Neuroinflammation plays a role in the development and maintenance of the dendritic spines involved in glutamatergic and GABAergic neurotransmission, and also influences blood–brain permeability. Cytokines released from microglia can impact the length, location or organization of dendritic spines on excitatory and inhibitory cells as well as recruit and impact glial cell function around the neurons. In this study, gene expression levels of anti- and pro-inflammatory signaling molecules, as well as oligodendrocyte and astrocyte marker proteins, were measured in both gray and white matter tissue in the anterior cingulate cortex from ASD and age-matched typically developing (TD) control brain donors, ranging from ages 4 to 37 years. Expression levels of the pro-inflammatory gene, HLA-DR, were significantly reduced in gray matter and expression levels of the anti-inflammatory gene MRC1 were significantly elevated in white matter from ASD donors as compared to TD donors, but neither retained statistical significance after correction for multiple comparisons. Modest trends toward differences in expression levels were also observed for the pro-inflammatory (CD68, IL1β) and anti-inflammatory genes (IGF1, IGF1R) comparing ASD donors to TD donors. The direction of gene expression changes comparing ASD to TD donors did not reveal consistent findings implicating an elevated pro- or anti-inflammatory state in ASD. However, altered expression of pro- and anti-inflammatory gene expression indicates some involvement of neuroinflammation in ASD.
Lay Summary: The anterior cingulate cortex is an integral brain region in modulating social behaviors including nonverbal communication. The study found that inflammatory gene expression levels were altered in this brain region. We hypothesize that the inflammatory changes in this area could impact neuronal function. The finding has future implications in using these molecular markers to identify potential environmental exposures and distinct cell differences in autism
Elevated Gene Expression of Glutamate Receptors in Noradrenergic Neurons From the Locus Coeruleus in Major Depression
Glutamate receptors are promising drug targets for the treatment of urgent suicide ideation and chronic major depressive disorder (MDD) that may lead to suicide completion. Antagonists of glutamatergic NMDA receptors reduce depressive symptoms faster than traditional antidepressants, with beneficial effects occurring within hours. Glutamate is the prominent excitatory input to the noradrenergic locus coeruleus (LC). The LC is activated by stress in part through this glutamatergic input. Evidence has accrued demonstrating that the LC may be overactive in MDD, while treatment with traditional antidepressants reduces LC activity. Pathological alterations of both glutamatergic and noradrenergic systems have been observed in depressive disorders, raising the prospect that disrupted glutamate-norepinephrine interactions may be a central component to depression and suicide pathobiology. This study examined the gene expression levels of glutamate receptors in post-mortem noradrenergic LC neurons from subjects with MDD (most died by suicide) and matched psychiatrically normal controls. Gene expression levels of glutamate receptors or receptor subunits were measured in LC neurons collected by laser capture microdissection. MDD subjects exhibited significantly higher expression levels of the NMDA receptor subunit genes, GRIN2B and GRIN2C, and the metabotropic receptor genes, GRM4 and GRM5, in LC neurons. Gene expression levels of these receptors in pyramidal neurons from prefrontal cortex (BA10) did not reveal abnormalities in MDD. These findings implicate disrupted glutamatergic-noradrenergic interactions at the level of the stress-sensitive LC in MDD and suicide, and provide a theoretical mechanism by which glutamate antagonists may exert rapid antidepressant effects
Low Gene Expression of Bone Morphogenetic Protein 7 in Brainstem Astrocytes in Major Depression
The noradrenergic locus coeruleus (LC) is the principal source of brain norepinephrine, a neurotransmitter thought to play a major role in the pathology of major depressive disorder (MDD) and in the therapeutic action of many antidepressant drugs. The goal of this study was to identify potential mediators of brain noradrenergic dysfunction in MDD. Bone morphogenetic protein 7 (BMP7), a member of the transforming growth factor-β superfamily, is a critical mediator of noradrenergic neuron differentiation during development and has neurotrophic and neuroprotective effects on mature catecholaminergic neurons. Real-time PCR of reversed transcribed RNA isolated from homogenates of LC tissue from 12 matched pairs of MDD subjects and psychiatrically normal control subjects revealed low levels of BMP7 gene expression in MDD. No differences in gene expression levels of other members of the BMP family were observed in the LC, and BMP7 gene expression was normal in the prefrontal cortex and amygdala in MDD subjects. Laser capture microdissection of noradrenergic neurons, astrocytes, and oligodendrocytes from the LC revealed that BMP7 gene expression was highest in LC astrocytes relative to the other cell types, and that the MDD-associated reduction in BMP7 gene expression was limited to astrocytes. Rats exposed to chronic social defeat exhibited a similar reduction in BMP7 gene expression in the LC. BMP7 has unique developmental and trophic actions on catecholamine neurons and these findings suggest that reduced astrocyte support for pontine LC neurons may contribute to pathology of brain noradrenergic neurons in MDD
Antidepressant-Like Actions of Inhibitors of Poly(ADP-Ribose) Polymerase in Rodent Models
Many patients suffering from depressive disorders are refractory to treatment with currently available antidepressant medications, while many more exhibit only a partial response. These factors drive research to discover new pharmacological approaches to treat depression. Numerous studies demonstrate evidence of inflammation and elevated oxidative stress in major depression. Recently, major depression has been shown to be associated with elevated levels of DNA oxidation in brain cells, accompanied by increased gene expression of the nuclear base excision repair enzyme, poly(ADP-ribose) polymerase-1. Given these findings and evidence that drugs that inhibit poly(ADP-ribose) polymerase-1 activity have antiinflammatory and neuroprotective properties, the present study was undertaken to examine the potential antidepressant properties of poly(ADP-ribose) polymerase inhibitors
Elevated DNA Oxidation and DNA Repair Enzyme Expression in Brain White Matter in Major Depressive Disorder
Background: Pathology of white matter in brains of patients with major depressive disorder (MDD) is well-documented, but the cellular and molecular basis of this pathology are poorly understood.
Methods:Levels of DNA oxidation and gene expression of DNA damage repair enzymes were measured in Brodmann area 10 (BA10) and/or amygdala (uncinate fasciculus) white matter tissue from brains of MDD (n=10) and psychiatrically normal control donors (n=13). DNA oxidation was also measured in BA10 white matter of schizophrenia donors (n=10) and in prefrontal cortical white matter from control rats (n=8) and rats with repeated stress-induced anhedonia (n=8).
Results:DNA oxidation in BA10 white matter was robustly elevated in MDD as compared to control donors, with a smaller elevation occurring in schizophrenia donors. DNA oxidation levels in psychiatrically affected donors that died by suicide did not significantly differ from DNA oxidation levels in psychiatrically affected donors dying by other causes (non-suicide). Gene expression levels of two base excision repair enzymes, PARP1 and OGG1, were robustly elevated in oligodendrocytes laser captured from BA10 and amygdala white matter of MDD donors, with smaller but significant elevations of these gene expressions in astrocytes. In rats, repeated stress-induced anhedonia, as measured by a reduction in sucrose preference, was associated with increased DNA oxidation in white, but not gray, matter.
Conclusions:Cellular residents of brain white matter demonstrate markers of oxidative damage in MDD. Medications that interfere with oxidative damage or pathways activated by oxidative damage have potential to improve treatment for MDD
The Noradrenergic System in Depression and Suicide
Norepinephrine (NE) is one of three catecholamine neurotransmitters in the brain and has been studied extensively in relation to the biology of suicide as well as psychiatric disorders that significantly increase the risk of suicide. NE became a candidate for the pathology of depression in the 1950s, but not because of a discovery of altered concentrations of NE in depressed patients or suicide victims. Instead, NE was one of the neurotransmitters along with dopamine and serotonin that was directly affected by newly discovered antidepressant drugs. Since that time, NE has been one of the most studied neurotransmitters with regard to depression biology and suicide, second only to serotonin. However, interest in the role of NE in suicide and depression has dwindled considerably over the past 10 years. In fact, interest in monoamines appears to be waning overall, possibly driven by a push by the National Institutes of Health for paradigm shifts in understanding psychiatric disease biology. The move away from interest in the monoamines is also being driven by high-throughput technologies such as microarrays, which divert investigators from traditional disease candidates to novel proteins and pathways. Despite the current trends, evidence that points to dysfunction in the central noradrenergic system in depression and suicide is very strong and it remains quite possible that deficits in NE signaling may lie at the very root of psychiatric disorders that contribute to suicide. This chapter reviews the neurobiology and functional output of the brain noradrenergic system in relation to the potential involvement of NE in depression and suicide
Noradrenergic Dysfunction in Depression and Suicide
Norepinephrine (NE) is one of three catecholamine neurotransmitters in the brain and has been studied extensively in relation to the biology of suicide as well as psychiatric disorders that significantly increase the risk of suicide. NE became a candidate for the pathology of depression in the 1950s, but not because of a discovery of altered concentrations of NE in depressed patients or suicide victims. Instead, NE was one of the neurotransmitters along with dopamine and serotonin that was directly affected by newly discovered antidepressant drugs. Since that time, NE has been one of the most studied neurotransmitters with regard to depression biology and suicide, second only to serotonin. However, interest in the role of NE in suicide and depression has dwindled considerably over the past 10 years. In fact, interest in monoamines appears to be waning overall, possibly driven by a push by the National Institutes of Health for paradigm shifts in understanding psychiatric disease biology. The move away from interest in the monoamines is also being driven by high-throughput technologies such as microarrays, which divert investigators from traditional disease candidates to novel proteins and pathways. Despite the current trends, evidence that points to dysfunction in the central noradrenergic system in depression and suicide is very strong and it remains quite possible that deficits in NE signaling may lie at the very root of psychiatric disorders that contribute to suicide. This chapter reviews the neurobiology and functional output of the brain noradrenergic system in relation to the potential involvement of NE in depression and suicide