25 research outputs found

    Quasi-periodic attractors, Borel summability and the Bryuno condition for strongly dissipative systems

    Full text link
    We consider a class of ordinary differential equations describing one-dimensional analytic systems with a quasi-periodic forcing term and in the presence of damping. In the limit of large damping, under some generic non-degeneracy condition on the force, there are quasi-periodic solutions which have the same frequency vector as the forcing term. We prove that such solutions are Borel summable at the origin when the frequency vector is either any one-dimensional number or a two-dimensional vector such that the ratio of its components is an irrational number of constant type. In the first case the proof given simplifies that provided in a previous work of ours. We also show that in any dimension dd, for the existence of a quasi-periodic solution with the same frequency vector as the forcing term, the standard Diophantine condition can be weakened into the Bryuno condition. In all cases, under a suitable positivity condition, the quasi-periodic solution is proved to describe a local attractor.Comment: 10 page

    Frequency locking in the injection-locked frequency divider equation

    Full text link
    We consider a model for the injection-locked frequency divider, and study analytically the locking onto rational multiples of the driving frequency. We provide explicit formulae for the width of the plateaux appearing in the devil's staircase structure of the lockings, and in particular show that the largest plateaux correspond to even integer values for the ratio of the frequency of the driving signal to the frequency of the output signal. Our results prove the experimental and numerical results available in the literature.Comment: 20 figures, 2 figure

    Bifurcation curves of subharmonic solutions

    Full text link
    We revisit a problem considered by Chow and Hale on the existence of subharmonic solutions for perturbed systems. In the analytic setting, under more general (weaker) conditions, we prove their results on the existence of bifurcation curves from the nonexistence to the existence of subharmonic solutions. In particular our results apply also when one has degeneracy to first order -- i.e. when the subharmonic Melnikov function vanishes identically. Moreover we can deal as well with the case in which degeneracy persists to arbitrarily high orders, in the sense that suitable generalisations to higher orders of the subharmonic Melnikov function are also identically zero. In general the bifurcation curves are not analytic, and even when they are smooth they can form cusps at the origin: we say in this case that the curves are degenerate as the corresponding tangent lines coincide. The technique we use is completely different from that of Chow and Hale, and it is essentially based on rigorous perturbation theory.Comment: 29 pages, 2 figure

    On the nature of space fluctuations of solutions of dissipative partial differential equations

    Get PDF
    In this work we have analysed the nature of space fluctuations in dissipative Partial Differential Equations (PDEs). By taking a well known and much investigated dissipative PDE as our representative, namely the Swift–Hohenberg Equation, we estimated in an explicit manner the values of the crest factor of its solutions. We believe that the crest factor, namely the ratio between the sup-norm and the L2 norm of solutions, is a suitable and proper measure of space fluctuations in solutions of dissipative PDEs. In particular it gives some information on the nature of “soft” and “hard” fluctuations regimes in the flows of dissipative PDEs
    corecore