94 research outputs found
Iodine-based contrast media, multiple myeloma and monoclonal gammopathies: literature review and ESUR Contrast Media Safety Committee guidelines
Objectives Many radiologists and clinicians still consider multiple myeloma (MM) and monoclonal gammopathies (MG) a contraindication for using iodine-based contrast media. The ESUR Contrast Media Safety Committee performed a systematic review of the incidence of post-contrast acute kidney injury (PC-AKI) in these patients. Methods A systematic search in Medline and Scopus databases was performed for renal function deterioration studies
in patients with MM or MG following administration of iodine-based contrast media. Data collection and analysis were performed according to the PRISMA statement 2009. Eligibility criteria and methods of analysis were specified in advance. Cohort and case-control studies reporting changes in renal function were included. Results Thirteen studies were selected that reported 824 iodine-based contrast medium administrations in 642 patients withMMorMG, in which 12 unconfounded cases of PC-AKIwere found (1.6 %). The majority of patients had intravenous urography with high osmolality ionic contrast media after preparatory dehydration and purgation. Conclusions MM and MG alone are not risk factors for PCAKI. However, the risk of PC-AKI may become significant in dehydrated patients with impaired renal function. Hypercalcaemia may increase the risk of kidney damage, and should be corrected before contrast medium administration. Assessment for Bence-Jones proteinuria is not necessary. Key Points \u2022 Monoclonal gammopathies including multiple myeloma are a large spectrum of disorders. \u2022 In monoclonal
gammopathy with normal renal function, PCAKI risk is not increased. \u2022 Renal function is often reduced in myeloma, increasing the risk of PC-AKI. \u2022 Correction of hypercalcaemia is necessary in myeloma before iodine-based contrast medium administration. \u2022 Bence-Jones proteinuria assessment in myeloma is unnecessary before iodine-based contrast medium administration
Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia
The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, which antagonizes B cell receptor (BCR) signals, demonstrates remarkable clinical activity in chronic lymphocytic leukemia (CLL). The lymphocytosis experienced by most patients under ibrutinib has previously been attributed to inhibition of BTK-dependent integrin and chemokine cues operating to retain the tumor cells in nodal compartments. Here, we show that the VLA-4 integrin, as expressed by CD49d-positive CLL, can be inside-out activated upon BCR triggering, thus reinforcing the adhesive capacities of CLL cells. In vitro and in vivo ibrutinib treatment, although reducing the constitutive VLA-4 activation and cell adhesion, can be overcome by exogenous BCR triggering in a BTK-independent manner involving PI3K. Clinically, in three independent ibrutinib-treated CLL cohorts, CD49d expression identifies cases with reduced lymphocytosis and inferior nodal response and behaves as independent predictor of shorter progression-free survival, suggesting the retention of CD49d-expressing CLL cells in tissue sites via activated VLA-4. Evaluation of CD49d expression should be incorporated in the characterization of CLL undergoing therapy with BCR inhibitors
Gamma-Ray Burst observations by the high-energy charged particle detector on board the CSES-01 satellite between 2019 and 2021
In this paper we report the detection of five strong Gamma-Ray Bursts (GRBs)
by the High-Energy Particle Detector (HEPD-01) mounted on board the China
Seismo-Electromagnetic Satellite (CSES-01), operational since 2018 on a
Sun-synchronous polar orbit at a 507 km altitude and 97
inclination. HEPD-01 was designed to detect high-energy electrons in the energy
range 3 - 100 MeV, protons in the range 30 - 300 MeV, and light nuclei in the
range 30 - 300 MeV/n. Nonetheless, Monte Carlo simulations have shown HEPD-01
is sensitive to gamma-ray photons in the energy range 300 keV - 50 MeV, even if
with a moderate effective area above 5 MeV. A dedicated time correlation
analysis between GRBs reported in literature and signals from a set of HEPD-01
trigger configuration masks has confirmed the anticipated detector sensitivity
to high-energy photons. A comparison between the simultaneous time profiles of
HEPD-01 electron fluxes and photons from GRB190114C, GRB190305A, GRB190928A,
GRB200826B and GRB211211A has shown a remarkable similarity, in spite of the
different energy ranges. The high-energy response, with peak sensitivity at
about 2 MeV, and moderate effective area of the detector in the actual flight
configuration explain why these five GRBs, characterised by a fluence above
3 10 erg cm in the energy interval 300 keV - 50
MeV, have been detected.Comment: Accepted for publication in The Astrophysical Journal (ApJ
Reconstruction of CNGS neutrino events in the emulsions of the OPERA experiment
The OPERA experiment aims at the direct observation of ν_mu -> ν_tau oscillations in the CNGS (CERN Neutrinos to Gran Sasso) neutrino beam produced at CERN; since the ν_e contamination in the CNGS beam is low, OPERA will also be able to study the sub-dominant oscillation channel ν_mu -> ν_e.
OPERA is a large scale hybrid apparatus divided in two supermodules, each equipped with electronic detectors, an iron spectrometer and a highly segmented ~0.7 kton target section made of Emulsion Cloud Chamber (ECC) units.
During my research work in the Bologna Lab. I have taken part to the set-up of the automatic scanning microscopes studying and tuning the scanning system performances and efficiencies with emulsions exposed to a test beam at CERN in 2007.
Once the triggered bricks were distributed to the collaboration laboratories, my work was centered on the procedure used for the localization and the reconstruction of neutrino events
Multiplexed Typing of Mycobacterium avium subsp. paratuberculosis Types I, II, and III by Luminex xMAP Suspension Array â–¿
Differentiation among types I, II, and III is the primary step in typing Mycobacterium avium subsp. paratuberculosis. We propose an innovative approach based on detection of gyrase B (gyrB) gene polymorphisms by suspension array technology, with high discriminatory power and high-throughput potential
- …