207 research outputs found
Saturn's Exploration Beyond Cassini-Huygens
For its beautiful rings, active atmosphere and mysterious magnetic field,
Saturn is a fascinating planet. It also holds some of the keys to understanding
the formation of our Solar System and the evolution of giant planets in
general. While the exploration by the Cassini-Huygens mission has led to great
advances in our understanding of the planet and its moons, it has left us with
puzzling questions: What is the bulk composition of the planet? Does it have a
helium core? Is it enriched in noble gases like Jupiter? What powers and
controls its gigantic storms? We have learned that we can measure an outer
magnetic field that is filtered from its non-axisymmetric components, but what
is Saturn's inner magnetic field? What are the rings made of and when were they
formed? These questions are crucial in several ways: a detailed comparison of
the compositions of Jupiter and Saturn is necessary to understand processes at
work during the formation of these two planets and of the Solar System. This
calls for the continued exploration of the second largest planet in our Solar
System, with a variety of means including remote observations and space
missions. Measurements of gravity and magnetic fields very close to the
planet's cloud tops would be extremely valuable. Very high spatial resolution
images of the rings would provide details on their structure and the material
that form them. Last but not least, one or several probes sent into the
atmosphere of the planet would provide the critical measurements that would
allow a detailed comparison with the same measurements at Jupiter. [abridged
abstract
Whistler mode waves upstream of Saturn
Whistler-mode waves are generated within and can propagate upstream of
collisionless shocks. They are known to play a role in electron
thermodynamics/acceleration and, under certain conditions, are markedly
observed as wave trains preceding the shock ramp. In this paper, we take
advantage of Cassini's presence at ~10 AU to explore the importance of
whistler-mode waves in a parameter regime typically characterized by higher
Mach number (median of ~14) shocks, as well as a significantly different IMF
structure, compared to near Earth. We identify electromagnetic precursors
preceding a small subset of bow shock crossings with properties which are
consistent with whistler-mode waves. We find these monochromatic,
low-frequency, circularly-polarized waves to have a typical frequency range of
0.2 - 0.4 Hz in the spacecraft frame. This is due to the lower ion and electron
cyclotron frequencies near Saturn, between which whistler waves can develop.
The waves are also observed as predominantly right-handed in the spacecraft
frame, the opposite sense to what is typically observed near Earth. This is
attributed to the weaker Doppler shift, owing to the large angle between the
solar wind velocity and magnetic field vectors at 10 AU. Our results on the low
occurrence of whistler waves upstream of Saturn also underpins the
predominantly supercritical bow shock of Saturn.Comment: Published in Journal of Geophysical Research: Space Physics (January
2017) 21 pages, 4 figure
The landscape of Saturn’s internal magnetic field from the Cassini Grand Finale
The Cassini mission entered the Grand Finale phase in April 2017 and executed 22.5 highly inclined, close-in orbits around Saturn before diving into the planet on September 15th 2017. Here we present our analysis of the Cassini Grand Finale magnetometer (MAG) dataset, focusing on Saturn’s internal magnetic field. These measurements demonstrate that Saturn’s internal magnetic field is exceptionally axisymmetric, with a dipole tilt less than 0.007 degrees (25.2 arcsecs). Saturn’s magnetic equator was directly measured to be shifted northward by ∼0.0468 ± 0.00043 (1σ) R_S, 2820 ± 26 km, at cylindrical radial distances between 1.034 and 1.069 R_S from the spin-axis. Although almost perfectly axisymmetric, Saturn’s internal magnetic field exhibits features on many characteristic length scales in the latitudinal direction. Examining B_r at the a = 0.75 R_S, c = 0.6993 R_S isobaric surface, the degree 4 to 11 contributions correspond to latitudinally banded magnetic perturbations with characteristic width ∼15∘, similar to that of the off-equatorial zonal jets observed in the atmosphere of Saturn. Saturn’s internal magnetic field beyond 60∘, in particular the small-scale features, are less well constrained by the available measurements, mainly due to incomplete spatial coverage in the polar region. Magnetic fields associated with the ionospheric Hall currents were estimated and found to contribute less than 2.5 nT to Gauss coefficients beyond degree 3. The magneto-disk field features orbit-to-orbit variations between 12 nT and 15.4 nT along the close-in part of Grand Finale orbits, offering an opportunity to measure the electromagnetic induction response from the interior of Saturn. A stably stratified layer thicker than 2500 km likely exists above Saturn’s deep dynamo to filter out the non-axisymmetric internal magnetic field. A heat transport mechanism other than pure conduction, e.g. double diffusive convection, must be operating within this layer to be compatible with Saturn’s observed luminosity. The latitudinally banded magnetic perturbations likely arise from a shallow secondary dynamo action with latitudinally banded differential rotation in the semi-conducting layer
Comparisons between MHD model calculations and observations of Cassini flybys of Titan
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94689/1/jgra18227.pd
No sodium in the vapour plumes of Enceladus
The discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core. Here we report a ground-based spectroscopic search for atomic sodium near Enceladus that places an upper limit on the mixing ratio in the vapour plumes orders of magnitude below the expected ocean salinity. The low sodium content of escaping vapour, together with the small fraction of salt-bearing particles, argues against a situation in which a near-surface geyser is fuelled by a salty ocean through cracks in the crust. The lack of observable sodium in the vapour is consistent with a wide variety of alternative eruption sources, including a deep ocean6, a freshwater reservoir, or ice. The existing data may be insufficient to distinguish between these hypotheses
Optics and Quantum Electronics
Contains table of contents for Section 3 and reports on twenty-one research projects.Joint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-0001U.S. Air Force - Office of Scientific Research Contract F49620-91-C-0091Charles S. Draper Laboratories Contract DL-H-441629MIT Lincoln LaboratoryCharles S. Draper Laboratories, Inc. Contract DL-H-418478Fujitsu LaboratoriesNational Science Foundation Grant ECS 90-12787National Center for Integrated PhotonicsNational Science Foundation Grant EET 88-15834National Science Foundation Grant ECS 85-52701U.S. Air Force - Office of Scientific Research Contract F49620-88-C-0089U.S. Navy - Office of Naval Research Contract N00014-91-C-0084U.S. Navy - Office of Naval Research Grant N00014-91-J-1956Johnson and Johnson Research GrantNational Institutes of Health Contract 2-R01-GM35459U.S. Department of Energy Grant DE-FG02-89 ER14012-A00
Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study
Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation
- …