138 research outputs found

    Shape based kinetic outlier detection in real-time PCR

    Get PDF
    Background: Real-time PCR has recently become the technique of choice for absolute and relative nucleic acid quantification. The gold standard quantification method in real-time PCR assumes that the compared samples have similar PCR efficiency. However, many factors present in biological samples affect PCR kinetic, confounding quantification analysis. In this work we propose a new strategy to detect outlier samples, called SOD. Results: Richards function was fitted on fluorescence readings to parameterize the amplification curves. There was not a significant correlation between calculated amplification parameters (plateau, slope and y-coordinate of the inflection point) and the Log of input DNA demonstrating that this approach can be used to achieve a "fingerprint" for each amplification curve. To identify the outlier runs, the calculated parameters of each unknown sample were compared to those of the standard samples. When a significant underestimation of starting DNA molecules was found, due to the presence of biological inhibitors such as tannic acid, IgG or quercitin, SOD efficiently marked these amplification profiles as outliers. SOD was subsequently compared with KOD, the current approach based on PCR efficiency estimation. The data obtained showed that SOD was more sensitive than KOD, whereas SOD and KOD were equally specific. Conclusion: Our results demonstrated, for the first time, that outlier detection can be based on amplification shape instead of PCR efficiency. SOD represents an improvement in real-time PCR analysis because it decreases the variance of data thus increasing the reliability of quantification

    The expression analysis of mouse interleukin-6 splice variants argued against their biological relevance

    Get PDF
    Alternative splicing generates several interleukin-6 (IL-6) isoforms; for them an antagonistic activity to the wild-type IL-6 has been proposed. In this study we quantified the relative abundance of IL-6 mRNA isoforms in a panel of mouse tissues and in C2C12 cells during myoblast differentiation or after treatment with the Ca2+ ionophore A23187, the AMP-mimetic AICAR and TNF-alpha. The two mouse IL-6 isoforrns identified, IL-6 delta 5 (deletion of the first 58 bp of exon 5) and IL-6 delta 3 (lacking exon 3), were not conserved in rat and human, did not exhibit tissue specific regulation, were expressed at low levels and their abundance closely correlated to that of full-length IL-6. Species-specific features of the IL-6 sequence, such as the presence of competitive 3' acceptor site in exon 5 and insertion of retrotransposable elements in intron 3, could explain the production of IL-6 delta 5 and IL-6 delta 3. Our results argued against biological significance for mouse IL-6 isoforms

    Dietary fat differentially modulate the mRNA expression levels of oxidative mitochondrial genes in skeletal muscle of healthy subjects.

    Get PDF
    Background and aims: Different types of dietary fats exert differential effects on glucose and lipid metabolism. Our aim was to evaluate the impact of different dietary fats on the expression of skeletal muscle genes regulating mitochondrial replication and function in healthy subjects. Methods and results: Ten healthy subjects (age 29±3 years; BMI 25.0±3kg/m2) received in a random order a test meal with the same energy content but different composition in macronutrients and quality of fat: Mediterranean (MED) meal, SAFA meal (Lipid 66%, saturated 36%) and MUFA meal (Lipid 63%, monounsaturated 37%). At fast and after 180min, a fine needle aspiration was performed from the vastus lateralis for determination of mitochondrial gene expression by quantitative PCR. No difference in glucose and triglyceride response was observed between the three meals, while NEFA levels were significantly higher following fat-rich meals compared to MED meal (p<0.002-0.0001). MED meal was associated with an increased expression, albeit not statistically significant, of some genes regulating both replication and function. Following MUFA meal, a significant increase in the expression of PGC1β (p=0.02) and a reduction in the transcription factor PPARδ (p=0.006) occurred with no change in the expression of COX and GLUT4 genes. In contrast, SAFA meal was associated with a marked reduction in the expression of COX (p<0.001) PFK (p<0.003), LPL (p=0.002) and GLUT4 (p=0.009) genes. Conclusion: Dietary fats differentially modulate gene transcriptional profile since saturated, but not monounsaturated fat, downregulate the expression of genes regulating muscle glucose transport and oxidation

    Analysis of biological and technical variability in gene expression assays from formalin-fixed paraffin-embedded classical Hodgkin lymphomas

    Get PDF
    Formalin-fixed paraffin-embedded (FFPE) tissues are invaluable sources of biological material for research and diagnostic purposes. In this study, we aimed to identify biological and technical variability in RT-qPCR TaqMan® assays performed with FFPE-RNA from lymph nodes of classical Hodgkin lymphoma samples. An ANOVA-nested 6-level design was employed to evaluate BCL2, CASP3, IRF4, LYZ and STAT1 gene expression. The most variable genes were CASP3 (low expression) and LYZ (high expression). Total variability decreased after normalization for all genes, except by LYZ. Genes with moderate and low expression were identified and suffered more the effects of the technical manipulation than high-expression genes. Pre-amplification was shown to introduce significant technical variability, which was partially alleviated by lowering to a half the amount of input RNA. Ct and Cy0 quantification methods, based on cycle-threshold and the kinetic of amplification curves, respectively, were compared. Cy0 method resulted in higher quantification values, leading to the decrease of total variability in CASP3 and LYZ genes. The mean individual noise was 0.45 (0.31 to 0.61 SD), indicating a variation of gene expression over ~1.5 folds from one case to another. We showed that total variability in RT-qPCR from FFPE-RNA is not higher than that reported for fresh complex tissues, and identified gene-, and expression level-sources of biological and technical variability, which can allow better strategies for designing RT-qPCR assays from highly degraded and inhibited samples

    Prunus spinosa Extract Loaded in Biomimetic Nanoparticles Evokes In Vitro Anti-Inflammatory and Wound Healing Activities

    Get PDF
    none14sìPrunus spinosa fruits (PSF) contain different phenolic compounds showing antioxidant and anti-inflammatory activities. Innovative drug delivery systems such as biomimetic nanoparticles could improve the activity of PSF extract by promoting (i) the protection of payload into the lipidic bilayer, (ii) increased accumulation to the diseased tissue due to specific targeting properties, (iii) improved biocompatibility, (iv) low toxicity and increased bioavailability. Using membrane proteins extracted from human monocyte cell line THP-1 cells and a mixture of phospholipids, we formulated two types of PSF-extract-loaded biomimetic vesicles differing from each other for the presence of either 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG). The biological activity of free extract (PSF), compared to both types of extract-loaded vesicles (PSF-DOPCs and PSF-DOPGs) and empty vesicles (DOPCs and DOPGs), was evaluated in vitro on HUVEC cells. PSF-DOPCs showed preferential incorporation of the extract. When enriched into the nanovesicles, the extract showed a significantly increased anti-inflammatory activity, and a pronounced wound-healing effect (with PSF-DOPCs more efficient than PSF-DOPG) compared to free PSF. This innovative drug delivery system, combining nutraceutical active ingredients into a biomimetic formulation, represents a possible adjuvant therapy for the treatment of wound healing. This nanoplatform could be useful for the encapsulation/enrichment of other nutraceutical products with short stability and low bioavailability.openTiboni, Mattia; Coppari, Sofia; Casettari, Luca; Guescini, Michele; Colomba, Mariastella; Fraternale, Daniele; Gorassini, Andrea; Verardo, Giancarlo; Ramakrishna, Seeram; Guidi, Loretta; Di Giacomo, Barbara; Mari, Michele; Molinaro, Roberto; Albertini, Maria CristinaTiboni, Mattia; Coppari, Sofia; Casettari, Luca; Guescini, Michele; Colomba, Mariastella; Fraternale, Daniele; Gorassini, Andrea; Verardo, Giancarlo; Ramakrishna, Seeram; Guidi, Loretta; Di Giacomo, Barbara; Mari, Michele; Molinaro, Roberto; Albertini, Maria Cristin

    Expression and subcellular localization of myogenic regulatory factors during the differentiation of skeletal muscle C2C12 myoblasts

    Get PDF
    It is known that the MyoD family members (MyoD, Myf5, myogenin, and MRF4) play a pivotal role in the complex mechanism of skeletal muscle cell differentiation. However, fragmentary information on transcription factor-specific regulation is available and data on their posttranscriptional and post-translational behavior are still missing. In this work, we combined mRNA and protein expression analysis with their subcellular localization. Each myogenic regulator factor (MRF) revealed a specific mRNA trend and a protein quantitative analysis not overlapping, suggesting the presence of post-transcriptional mechanisms. In addition, each MRF showed a specific behavior in situ, characterized by a differentiation stage-dependent localization suggestive of a post-translational regulation also. Consistently with their transcriptional activity, immunogold electron microscopy data revealed MRFs distribution in interchromatin domains. Our results showed a MyoD and Myf5 contrasting expression profile in proliferating myoblasts, as well as myogenin and MRF4 opposite distribution in the terminally differentiated myotubes. Interestingly, MRFs expression and subcellular localization analysis during C2C12 cell differentiation stages showed two main MRFs regulation mechanisms: (i) the protein half-life regulation to modulate the differentiation stage-dependent transcriptional activity and (ii) the cytoplasmic retention, as a translocation process, to inhibit the transcriptional activity. Therefore, our results exhibit that MRFs nucleo-cytoplasmic trafficking is involved in muscle differentiation and suggest that, besides the MRFs expression level, also MRFs subcellular localization, related to their functional activity, plays a key role as a regulatory step in transcriptional control mechanisms

    Small Extracellular Vesicles from Inflamed Adipose Derived Stromal Cells Enhance the NF-κB-Dependent Inflammatory/Catabolic Environment of Osteoarthritis

    Get PDF
    The last decade has seen exponentially growing efforts to exploit the effects of adipose derived stromal cells (ADSC) in the treatment of a wide range of chronic degenerative diseases, including osteoarthritis (OA), the most prevalent joint disorder. In the perspective of developing a cell-free advanced therapy medicinal product, a focus has been recently addressed to the ADSC secretome that lends itself to an allogeneic use and can be further dissected for the selective purification of small extracellular vesicles (sEVs). sEVs can act as "biological drug carriers" to transfer information that mirror the pathophysiology of the providing cells. This is important in the clinical perspective where many OA patients are also affected by the metabolic syndrome (MetS). ADSC from MetS OA patients are dysfunctional and "inflammatory" primed within the adipose tissue. To mimic this condition, we exposed ADSC to IL-1 beta, and then we investigated the effects of the isolated sEVs on chondrocytes and synoviocytes, either cultured separately or in co-culture, to tease out the effects of these "IL-1 beta primed sEVs" on gene and protein expression of major inflammatory and catabolic OA markers. In comparison with sEVs isolated from unstimulated ADSC, the IL-1 beta primed sEVs were able to propagate NF-kappa B activation in bystander joint cells. The effects were more prominent on synoviocytes, possibly because of a higher expression of binding molecules such as CD44. These findings call upon a careful characterization of the "inflammatory fingerprint" of ADSC to avoid the transfer of an unwanted message as well as the development of in vitro "preconditioning" strategies able to rescue the antiinflammatory/anticatabolic potential of ADSC-derived sEVs

    Detection and Investigation of Extracellular Vesicles in Serum and Urine Supernatant of Prostate Cancer Patients

    Get PDF
    none13no: Prostate Cancer (PCa) is one of the most frequently identified urological cancers. PCa patients are often over-diagnosed due to still not highly specific diagnostic methods. The need for more accurate diagnostic tools to prevent overestimated diagnosis and unnecessary treatment of patients with non-malignant conditions is clear, and new markers and methods are strongly desirable. Extracellular vesicles (EVs) hold great promises as liquid biopsy-based markers. Despite the biological and technical issues present in their detection and study, these particles can be found highly abundantly in the biofluid and encompass a wealth of macromolecules that have been reported to be related to many physiological and pathological processes, including cancer onset, metastasis spreading, and treatment resistance. The present study aims to perform a technical feasibility study to develop a new workflow for investigating EVs from several biological sources. Serum and urinary supernatant EVs of PCa, benign prostatic hyperplasia (BPH) patients, and healthy donors were isolated and investigated by a fast, easily performable, and cost-effective cytofluorimetric approach for a multiplex detection of 37 EV-antigens. We also observed significant alterations in serum and urinary supernatant EVs potentially related to BPH and PCa, suggesting a potential clinical application of this workflow.openSalvi, Samanta; Bandini, Erika; Carloni, Silvia; Casadio, Valentina; Battistelli, Michela; Salucci, Sara; Erani, Ilaria; Scarpi, Emanuela; Gunelli, Roberta; Cicchetti, Giacomo; Guescini, Michele; Bonafè, Massimiliano; Fabbri, FrancescoSalvi, Samanta; Bandini, Erika; Carloni, Silvia; Casadio, Valentina; Battistelli, Michela; Salucci, Sara; Erani, Ilaria; Scarpi, Emanuela; Gunelli, Roberta; Cicchetti, Giacomo; Guescini, Michele; Bonafè, Massimiliano; Fabbri, Francesc

    Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks

    Get PDF
    Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT) and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR) heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT) and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT) and histamine striatal afferents, the cholinergic interneurons, and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal cellular networks

    Muscle and Systemic Molecular Responses to a Single Flywheel Based Iso-Inertial Training Session in Resistance-Trained Men

    Get PDF
    Growing evidence points to the effectiveness of flywheel (FW) based iso-inertial resistance training in improving physical performance capacities. However, molecular adaptations induced by FW exercises are largely unknown. Eight resistance-trained men performed 5 sets of 10 maximal squats on a FW device. Muscle biopsies (fine needle aspiration technique) and blood samples were collected before (t0), and 2 h (t1) after FW exercise. Blood samples were additionally drawn after 24 h (t2) and 48 h (t3). Paired samples t-tests revealed significant increases, at t1, of mRNA expression of the genes involved in inflammation, in both muscle (MCP-1, TNF-α, IL-6) and peripheral blood mononuclear cells (IkB-α, MCP-1). Circulating extracellular vesicles (EVs) and EV-encapsulated miRNA levels (miR-206, miR-146a) significantly increased at t1 as well. Conversely, muscle mRNA level of genes associated with muscle growth/remodeling (IGF-1Ea, cyclin D1, myogenin) decreased at t1. One-way repeated measure ANOVAs, with Bonferroni corrected post-hoc pairwise comparisons, revealed significant increases in plasma concentrations of IL-6 (t1; t2; t3) and muscle creatine kinase (t1; t2), while IGF-1 significantly increased at t2 only. Our findings show that, even in experienced resistance trained individuals, a single FW training session modifies local and systemic markers involved in late structural remodeling and functional adaptation of skeletal muscle
    corecore