2 research outputs found

    Efflux Pump (QacA, QacB, and QacC) and β-Lactamase Inhibitors? An Evaluation of 1,8-Naphthyridines against <i>Staphylococcus aureus</i> Strains

    No full text
    The bacterial species Staphylococcus aureus presents a variety of resistance mechanisms, among which the expression of β-lactamases and efflux pumps stand out for providing a significant degree of resistance to clinically relevant antibiotics. The 1,8-naphthyridines are nitrogen heterocycles with a broad spectrum of biological activities and, as such, are promising research targets. However, the potential roles of these compounds on bacterial resistance management remain to be better investigated. Therefore, the present study evaluated the antibacterial activity of 1,8-naphthyridine sulfonamides, addressing their ability to act as inhibitors of β-lactamases and efflux pump (QacA/B and QacC) against the strains SA-K4414 and SA-K4100 of S. aureus. All substances were prepared at an initial concentration of 1024 μg/mL, and their minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. Subsequently, their effects on β-lactamase- and efflux pump-mediated antibiotic resistance was evaluated from the reduction of the MIC of ethidium bromide (EtBr) and β-lactam antibiotics, respectively. The 1,8-naphthyridines did not present direct antibacterial activity against the strains SA-K4414 and SA-K4100 of S. aureus. On the other hand, when associated with antibiotics against both strains, the compounds reduced the MIC of EtBr and β-lactam antibiotics, suggesting that they may act by inhibiting β-lactamases and efflux pumps such as QacC and QacA/B. However, further research is required to elucidate the molecular mechanisms underlying these observed effects

    The 1,8-naphthyridines sulfonamides are NorA efflux pump inhibitors

    No full text
    Objective: Efflux pumps are transmembrane proteins associated with bacterial resistance mechanisms. Bacteria use these proteins to actively transport antibiotics to the extracellular medium, preventing the pharmacological action of these drugs. This study aimed to evaluate in vitro the antibacterial activity of 1,8-naphthyridines sulfonamides, as well as their ability to inhibit efflux systems of Staphylococcus aureus strains expressing different levels of the NorA efflux pump. Methods: The broth microdilution test was performed to assess antibacterial activity. Efflux pump inhibition was evaluated in silico by molecular docking and in vitro by fluorometric tests, and the minimum inhibitory concentration (MIC) was determined. The MIC was determined in the association between 1,8-naphthyridine and norfloxacin or ethidium bromide. Results: The 1,8-naphthyridines did not show direct antibacterial activity. However, they effectively reduced the MIC of multidrug-resistant bacteria by associating with norfloxacin and ethidium bromide, in addition to increasing the fluorescence emission. In silico analysis addressing the binding between NorA and 1,8-naphthyridines suggests that hydrogen bonds and hydrophilic interactions represent the interactions with the most favourable binding energy, corroborating the experimental data. Conclusion: Our data suggest that 1,8-naphthyridines sulfonamides inhibit bacterial resistance through molecular mechanisms associated with inhibition of the NorA efflux pump in S. aureus strains
    corecore