8 research outputs found

    Orthogonal Test Design for the Optimization of Preparation of Steel Slag-Based Carbonated Building Materials with Ultramafic Tailings as Fine Aggregates

    No full text
    The high carbonation potential makes ultramafic tailings ideal aggregates for carbonated building materials. This paper investigates the preparation condition of ultramafic tailings and steel slag through orthogonal experiments. The results show that compressive strength has a positive exponential correlation with the CO2 uptake of the carbonated compacts. The optimized conditions include a slag-tailings ratio of 5:5, a carbonation time of 12 h, a grinding time of 0 min, and a water-solid ratio of 2.5:10, when the compressive strength of the carbonated compacts reaches 29 MPa and the CO2 uptake reaches 66.5 mg CO2/g. The effects on the compressive strength ordered from high to low impact are the slag/tailings ratio, carbonation time, grinding time of steel slag, and water–solid ratio. The effects on the CO2 uptake ordered from high to low impact are the slag–tailings ratio, water–solid ratio, carbonation time, and grinding time of steel slag. A high water–solid ratio hinders the early carbonation reactions, but promotes the long-term carbonation reaction. Steel slag is the main material being carbonated and contributes to the hardening of the compacts through carbonation curing at room temperature. Ultramafic tailings assist steel slag in hardening through minor carbonation and provide fibrous contents. The obtained results lay a solid foundation for the development of tailings-steel slag carbonated materials

    Orthogonal Test Design for the Optimization of Preparation of Steel Slag-Based Carbonated Building Materials with Ultramafic Tailings as Fine Aggregates

    No full text
    The high carbonation potential makes ultramafic tailings ideal aggregates for carbonated building materials. This paper investigates the preparation condition of ultramafic tailings and steel slag through orthogonal experiments. The results show that compressive strength has a positive exponential correlation with the CO2 uptake of the carbonated compacts. The optimized conditions include a slag-tailings ratio of 5:5, a carbonation time of 12 h, a grinding time of 0 min, and a water-solid ratio of 2.5:10, when the compressive strength of the carbonated compacts reaches 29 MPa and the CO2 uptake reaches 66.5 mg CO2/g. The effects on the compressive strength ordered from high to low impact are the slag/tailings ratio, carbonation time, grinding time of steel slag, and water–solid ratio. The effects on the CO2 uptake ordered from high to low impact are the slag–tailings ratio, water–solid ratio, carbonation time, and grinding time of steel slag. A high water–solid ratio hinders the early carbonation reactions, but promotes the long-term carbonation reaction. Steel slag is the main material being carbonated and contributes to the hardening of the compacts through carbonation curing at room temperature. Ultramafic tailings assist steel slag in hardening through minor carbonation and provide fibrous contents. The obtained results lay a solid foundation for the development of tailings-steel slag carbonated materials

    Ekzemtherapie

    No full text

    Phages and their potential to modulate the microbiome and immunity

    No full text

    Normal Development of Brain Circuits

    No full text
    Spanning functions from the simplest reflex arc to complex cognitive processes, neural circuits have diverse functional roles. In the cerebral cortex, functional domains such as visual processing, attention, memory, and cognitive control rely on the development of distinct yet interconnected sets of anatomically distributed cortical and subcortical regions. The developmental organization of these circuits is a remarkably complex process that is influenced by genetic predispositions, environmental events, and neuroplastic responses to experiential demand that modulates connectivity and communication among neurons, within individual brain regions and circuits, and across neural pathways. Recent advances in neuroimaging and computational neurobiology, together with traditional investigational approaches such as histological studies and cellular and molecular biology, have been invaluable in improving our understanding of these developmental processes in humans in both health and illness. To contextualize the developmental origins of a wide array of neuropsychiatric illnesses, this review describes the development and maturation of neural circuits from the first synapse through critical periods of vulnerability and opportunity to the emergent capacity for cognitive and behavioral regulation, and finally the dynamic interplay across levels of circuit organization and developmental epochs
    corecore