25,575 research outputs found
Proca equations derived from first principles
Gersten has shown how Maxwell equations can be derived from first principles,
similar to those which have been used to obtain the Dirac relativistic electron
equation. We show how Proca equations can be also deduced from first
principles, similar to those which have been used to find Dirac and Maxwell
equations. Contrary to Maxwell equations, it is necessary to introduce a
potential in order to transform a second order differential equation, as the
Klein-Gordon equation, into a first order differential equation, like Proca
equations.Comment: 6 page
A Tandem Fluid Network with L\'evy Input in Heavy Traffic
In this paper we study the stationary workload distribution of a fluid tandem
queue in heavy traffic. We consider different types of L\'evy input, covering
compound Poisson, -stable L\'evy motion (with ), and
Brownian motion. In our analysis we separately deal with L\'evy input processes
with increments that have finite and infinite variance. A distinguishing
feature of this paper is that we do not only consider the usual heavy-traffic
regime, in which the load at one of the nodes goes to unity, but also a regime
in which we simultaneously let the load of both servers tend to one, which, as
it turns out, leads to entirely different heavy-traffic asymptotics. Numerical
experiments indicate that under specific conditions the resulting simultaneous
heavy-traffic approximation significantly outperforms the usual heavy-traffic
approximation
Crystal Structures of Polymerized Fullerides AC60, A=K, Rb, Cs and Alkali-mediated Interactions
Starting from a model of rigid interacting C60 polymer chains on an
orthorhombic lattice, we study the mutual orientation of the chains and the
stability of the crystalline structures Pmnn and I2/m. We take into account i)
van der Waals interactions and electric quadrupole interactions between C60
monomers on different chains as well as ii) interactions of the monomers with
the surrounding alkali atoms. The direct interactions i) always lead to an
antiferrorotational structure Pmnn with alternate orientation of the C60 chains
in planes (001). The interactions ii) with the alkalis consist of two parts:
translation-rotation (TR) coupling where the orientations of the chains
interact with displacements of the alkalis, and quadrupolar electronic
polarizability (ep) coupling, where the electric quadrupoles on the C60
monomers interact with induced quadrupoles due to excited electronic d states
of the alkalis. Both interactions ii) lead to an effective
orientation-orientation interaction between the C60 chains and always favor the
ferrorotational structure I2/m where C60 chains have a same orientation. The
structures Pmnn for KC60 and I2/m for Rb- and CsC60 are the result of a
competition between the direct interaction i) and the alkali-mediated
interactions ii). In Rb- and CsC60 the latter are found to be dominant, the
preponderant role being played by the quadrupolar electronic polarizability of
the alkali ions.Comment: J.Chem.Phys., in press, 14 pages, 3 figures, 8 table
Preliminary results from the STEPHI2009 campaign on the open cluster NGC 1817
We present preliminary observational results of the multi-site STEPHI
campaign on the cluster NGC 1817. The three observatories involved are San
Pedro Martir (Mexico), Xing Long (China) and the Observatorio del Teide (Spain)
- giving an ideal combination to maximise the duty cycle. The cluster has 12
known delta Scuti stars and at least two detached eclipsing binary systems.
This combination of characteristics is ideal for extracting information about
global parameters of the targets, which will in turn impose strict constraints
on the stellar models. From an initial comparison with stellar models using the
known fundamental parameters, and just the observed pulsation frequencies and
measured effective temperatures, it appears that a lower value of initial
helium mass fraction will most likely explain the observations of these stars.Comment: 4 pages, proceedings from HELAS IV meeting 2010, Lanzarot
Induced polarization and electronic properties of carbon doped boron-nitride nanoribbons
The electronic properties of boron-nitride nanoribbons (BNNRs) doped with a
line of carbon atoms are investigated by using density functional calculations.
Three different configurations are possible: the carbon atoms may replace a
line of boron or nitrogen atoms or a line of alternating B and N atoms which
results in very different electronic properties. We found that: i) the NCB
arrangement is strongly polarized with a large dipole moment having an
unexpected direction, ii) the BCB and NCN arrangement are non-polar with zero
dipole moment, iii) the doping by a carbon line reduces the band gap
independent of the local arrangement of boron and nitrogen around the carbon
line, iv) an electric field parallel to the carbon line polarizes the BN sheet
and is found to be sensitive to the presence of carbon dopants, and v) the
energy gap between the highest occupied molecular orbital and the lowest
unoccupied molecular orbital decreases linearly with increasing applied
electric field directed parallel to the carbon line. We show that the
polarization and energy gap of carbon doped BNNRs can be tuned by an electric
field applied parallel along the carbon line.Comment: 11 pages, 6 figure
- …