20,184 research outputs found

    New theory of the gamma-alpha phase transition in Ce: quadrupolar ordering

    Full text link
    We present a theoretical model of the "isostructural" \gamma-\alpha phase transition in Ce which is based on quadrupolar interactions due to coupled charge density fluctuations of 4f electrons and of conduction electrons. Conduction electrons are treated in tight-binding approximation. The \gamma-\alpha transition is described as an orientational ordering of quadrupolar electronic densities in a Pa3 structure. The quadrupolar order of the conduction electron densities is complementary to the quadrupolar order of 4f electron densities. The inclusion of conduction electrons leads to an increase of the lattice contraction at the \gamma-\alpha transition in comparison to the sole effect of 4f electrons. We calculate the Bragg scattering law and suggest synchrotron radiation experiments in order to check the Pa3 structure. The theory is capable of accounting for transitions to phases of non-cubic symmetry, but it is not sufficient to describe the magnetic phenomena which we ascribe to the Kondo mechanism. We also present a microscopic derivation of multipolar interactions and discuss the crystal field of \gamma-Ce.Comment: 19 pages, 4 figures, full version to be published in Eur. Phys. J.

    Resummation Improved Rapidity Spectrum for Gluon Fusion Higgs Production

    Full text link
    Gluon-induced processes such as Higgs production typically exhibit large perturbative corrections. These partially arise from large virtual corrections to the gluon form factor, which at timelike momentum transfer contains Sudakov logarithms evaluated at negative arguments ln2(1)=π2\ln^2(-1) = -\pi^2. It has been observed that resumming these terms in the timelike form factor leads to a much improved perturbative convergence for the total cross section. We discuss how to consistently incorporate the resummed form factor into the perturbative predictions for generic cross sections differential in the Born kinematics, including in particular the Higgs rapidity spectrum. We verify that this indeed improves the perturbative convergence, leading to smaller and more reliable perturbative uncertainties, and that this is not affected by cancellations between resummed and unresummed contributions. Combining both fixed-order and resummation uncertainties, the perturbative uncertainty for the total cross section at N3^3LO++N3^3LLφ^\prime_\varphi is about a factor of two smaller than at N3^3LO. The perturbative uncertainty of the rapidity spectrum at NNLO++NNLLφ^\prime_\varphi is similarly reduced compared to NNLO. We also study the analogous resummation for quark-induced processes, namely Higgs production through bottom quark annihilation and the Drell-Yan rapidity spectrum. For the former the resummation leads to a small improvement, while for the latter it confirms the already small uncertainties of the fixed-order predictions.Comment: 30 pages + 17 pages in Appendices, 10 figures; v2: journal version; references added, discussed individual partonic channels for Drell-Ya

    NiO Exchange Bias Layers Grown by Direct Ion Beam Sputtering of a Nickel Oxide Target

    Full text link
    A new process for fabricating NiO exchange bias layers has been developed. The process involves the direct ion beam sputtering (IBS) of a NiO target. The process is simpler than other deposition techniques for producing NiO buffer layers, and facilitates the deposition of an entire spin-valve layered structure using IBS without breaking vacuum. The layer thickness and temperature dependence of the exchange field for NiO/NiFe films produced using IBS are presented and are similar to those reported for similar films deposited using reactive magnetron sputtering. The magnetic properties of highly textured exchange couples deposited on single crystal substrates are compared to those of simultaneously deposited polycrystalline films, and both show comparable exchange fields. These results are compared to current theories describing the exchange coupling at the NiO/NiFe interface.Comment: 9 pages, Latex 2.09, 3 postscript figures. You can also this manuscript at http://www.wsrcc.com/alison/fixed-nio/manuscript.html To be published in _IEEE Trans. Magn._, Nov. 199

    Crystal Structures of Polymerized Fullerides AC60, A=K, Rb, Cs and Alkali-mediated Interactions

    Full text link
    Starting from a model of rigid interacting C60 polymer chains on an orthorhombic lattice, we study the mutual orientation of the chains and the stability of the crystalline structures Pmnn and I2/m. We take into account i) van der Waals interactions and electric quadrupole interactions between C60 monomers on different chains as well as ii) interactions of the monomers with the surrounding alkali atoms. The direct interactions i) always lead to an antiferrorotational structure Pmnn with alternate orientation of the C60 chains in planes (001). The interactions ii) with the alkalis consist of two parts: translation-rotation (TR) coupling where the orientations of the chains interact with displacements of the alkalis, and quadrupolar electronic polarizability (ep) coupling, where the electric quadrupoles on the C60 monomers interact with induced quadrupoles due to excited electronic d states of the alkalis. Both interactions ii) lead to an effective orientation-orientation interaction between the C60 chains and always favor the ferrorotational structure I2/m where C60 chains have a same orientation. The structures Pmnn for KC60 and I2/m for Rb- and CsC60 are the result of a competition between the direct interaction i) and the alkali-mediated interactions ii). In Rb- and CsC60 the latter are found to be dominant, the preponderant role being played by the quadrupolar electronic polarizability of the alkali ions.Comment: J.Chem.Phys., in press, 14 pages, 3 figures, 8 table

    Inert states of spin-S systems

    Full text link
    We present a simple but efficient geometrical method for determining the inert states of spin-S systems. It can be used if the system is described by a spin vector of a spin-S particle and its energy is invariant in spin rotations and phase changes. Our method is applicable to an arbitrary S and it is based on the representation of a pure spin state of a spin-S particle in terms of 2S points on the surface of a sphere. We use this method to find candidates for some of the ground states of spinor Bose-Einstein condensates.Comment: 4 pages, 2 figures, minor changes, references added, typos correcte

    Induced polarization and electronic properties of carbon doped boron-nitride nanoribbons

    Full text link
    The electronic properties of boron-nitride nanoribbons (BNNRs) doped with a line of carbon atoms are investigated by using density functional calculations. Three different configurations are possible: the carbon atoms may replace a line of boron or nitrogen atoms or a line of alternating B and N atoms which results in very different electronic properties. We found that: i) the NCB arrangement is strongly polarized with a large dipole moment having an unexpected direction, ii) the BCB and NCN arrangement are non-polar with zero dipole moment, iii) the doping by a carbon line reduces the band gap independent of the local arrangement of boron and nitrogen around the carbon line, iv) an electric field parallel to the carbon line polarizes the BN sheet and is found to be sensitive to the presence of carbon dopants, and v) the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases linearly with increasing applied electric field directed parallel to the carbon line. We show that the polarization and energy gap of carbon doped BNNRs can be tuned by an electric field applied parallel along the carbon line.Comment: 11 pages, 6 figure
    corecore