1 research outputs found

    Plasticity of brittle epoxy resins during debonding failures

    Full text link
    A remarkably high degree of plasticity in brittle epoxies during debonding failures is reported. The plasticity is exhibited by the presence of ridges on the debonded surfaces having a width and height above the general level of these surfaces of the order of 100 nm. The surfaces of the more rigid substrates from which the debonding has occurred, by contrast, are smooth after debonding. The ridges have been found in several forms: in more or less straight rows parallel to the debonding fracture direction; as irregularly-shapes rings or craters, probably formed from secondary crack growth; as paraboloids, which also seem to be related to secondary crack growth; and as serpentine rows more or less perpendicular to the debonding fracture direction. This behaviour has been exhibited by various epoxy formulations. The 100 nm widths and heights for the ridges suggest that during debonding, plastic deformation has occurred rather uniformly in the epoxy to a depth below the interface of this order. This behaviour is in contrast to the simple notion of brittle fracture, in which atoms or molecules separate across planes in an elastically strained body. It differs also from the bulk fracturing process with these resins, in which a smaller amplitude, more random ridge and groove texture, referred to as the “basic longitudinal” or “fingering” texture, is seen.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44693/1/10853_2005_Article_BF01168982.pd
    corecore