606 research outputs found

    CO ice photodesorption: A wavelength-dependent study

    Full text link
    UV-induced photodesorption of ice is a non-thermal evaporation process that can explain the presence of cold molecular gas in a range of interstellar regions. Information on the average UV photodesorption yield of astrophysically important ices exists for broadband UV lamp experiments. UV fields around low-mass pre-main sequence stars, around shocks and in many other astrophysical environments are however often dominated by discrete atomic and molecular emission lines. It is therefore crucial to consider the wavelength dependence of photodesorption yields and mechanisms. In this work, for the first time, the wavelength-dependent photodesorption of pure CO ice is explored between 90 and 170 nm. The experiments are performed under ultra high vacuum conditions using tunable synchrotron radiation. Ice photodesorption is simultaneously probed by infrared absorption spectroscopy in reflection mode of the ice and by quadrupole mass spectrometry of the gas phase. The experimental results for CO reveal a strong wavelength dependence directly linked to the vibronic transition strengths of CO ice, implying that photodesorption is induced by electronic transition (DIET). The observed dependence on the ice absorption spectra implies relatively low photodesorption yields at 121.6 nm (Ly-alpha), where CO barely absorbs, compared to the high yields found at wavelengths coinciding with transitions into the first electronic state of CO (singulet Pi at 150 nm); the CO photodesorption rates depend strongly on the UV profiles encountered in different star formation environments.Comment: 5 pages, 2 figures, published in ApJ

    Quasi-periodic oscillations in accreting magnetic white dwarfs: I. Observational constraints in X-ray and optical

    Get PDF
    International audienceQuasi-periodic oscillations (QPOs) are observed in the optical flux of some polars with typical periods of 1 to 3 s but none have been observed yet in X-rays where a significant part of the accreting energy is released. QPOs are expected and predicted from shock oscillations. Most of the polars have been observed by the XMM-Newton satellite. We made use of the homogeneous set of observations of the polars by XMM-Newton to search for the presence of QPOs in the (0.5–10 keV) energy range and to set significant upper limits for the brightest X-ray polars. We extracted high time-resolution X-ray light curves by taking advantage of the 0.07 s resolution of the EPIC-PN camera. Among the 65 polars observed with XMM-Newton from 1998 to 2012, a sample of 24 sources was selected on the basis of their counting rate in the PN instrument to secure significant limits. We searched for QPOs using Fast Fourier Transform (FFT) methods and defined limits of detection using statistical tools. Among the sample surveyed, none shows QPOs at a significant level. Upper limits to the fractional flux in QPOs range from 7% to 71%. These negative results are compared to the detailed theoretical predictions of numerical simulations based on a 2D hydrodynamical code presented in Paper II. Cooling instabilities in the accretion column are expected to produce shock quasi-oscillations with a maximum amplitude reaching ~40% in the bremsstrahlung (0.5–10 keV) X-ray emission and ~20% in the optical cyclotron emission. The absence of X-ray QPOs imposes an upper limit of ~(5–10) g cm-2 s-1 on the specific accretion rate but this condition is found inconsistent with the value required to account for the amplitudes and frequencies of the observed optical QPOs. This contradiction outlines probable shortcomings with the shock instability model

    Modeling multidimensional effects in the propagation of radiative shocks

    Get PDF
    Radiative shocks (also called supercritical shocks) are high Mach number shock waves that photoionize the medium ahead of the shock front and give rise to a radiative precursor. They are generated in the laboratory using high-energy or high-power lasers and are frequently present in a wide range of astronomical objects. Their modelisation in one dimension has been the subject of numerous studies, but generalization to three dimensions is not straightforward. We calculate analyticaly the absorption of radiation in a grey uniform cylinder and show how it decreases with χR\chi R, the product of the opacity χ\chi and of the cylinder radius RR. Simple formulas, whose validity range increases when χR\chi R diminishes, are derived for the radiation field on the axis of symmetry. Numerical calculations in three dimensions of the radiative energy density, flux and pressure created by a stationary shock wave show how the radiation decreases whith RR. Finally, the bidimensional structures of both the precursor and the radiation field are calculated with time-dependent radiation hydrodynamics numerical simulations and the influence of two-dimensional effects on the electron density, the temperature, the shock velocity and the shock geometry are exhibited. These simulations show how the radiative precursor shortens, cools and slows down when RR is decreased

    Indirect ultraviolet photodesorption from CO:N2 binary ices - an efficient grain-gas process

    Get PDF
    UV ice photodesorption is an important non-thermal desorption pathway in many interstellar environments that has been invoked to explain observations of cold molecules in disks, clouds and cloud cores. Systematic laboratory studies of the photodesorption rates, between 7 and 14 eV, from CO:N2 binary ices, have been performed at the DESIRS vacuum UV beamline of the synchrotron facility SOLEIL. The photodesorption spectral analysis demonstrates that the photodesorption process is indirect, i.e. the desorption is induced by a photon absorption in sub-surface molecular layers, while only surface molecules are actually desorbing. The photodesorption spectra of CO and N2 in binary ices therefore depend on the absorption spectra of the dominant species in the subsurface ice layer, which implies that the photodesorption efficiency and energy dependence are dramatically different for mixed and layered ices compared to pure ices. In particular, a thin (1-2 ML) N2 ice layer on top of CO will effectively quench CO photodesorption, while enhancing N2 photodesorption by a factors of a few (compared to the pure ices) when the ice is exposed to a typical dark cloud UV field, which may help to explain the different distributions of CO and N2H+ in molecular cloud cores. This indirect photodesorption mechanism may also explain observations of small amounts of complex organics in cold interstellar environments.Comment: 21 pages 5 figure

    Similarity Properties and Scaling Laws of Radiation Hydrodynamic Flows in Laboratory Astrophysics

    Get PDF
    The spectacular recent development of modern high-energy density laboratory facilities which concentrate more and more energy in millimetric volumes allows the astrophysical community to reproduce and to explore, in millimeter-scale targets and during very short times, astrophysical phenomena where radiation and matter are strongly coupled. The astrophysical relevance of these experiments can be checked from the similarity properties and especially scaling laws establishment, which constitutes the keystone of laboratory astrophysics. From the radiating optically thin regime to the so-called optically thick radiative pressure regime, we present in this paper, for the first time, a complete analysis of the main radiating regimes that we encountered in laboratory astrophysics with the same formalism based on the Lie-group theory. The use of the Lie group method appears as systematic which allows to construct easily and orderly the scaling laws of a given problem. This powerful tool permits to unify the recent major advances on scaling laws and to identify new similarity concepts that we discuss in this paper and which opens important applications for the present and the future laboratory astrophysics experiments. All these results enable to demonstrate theoretically that astrophysical phenomena in such radiating regimes can be explored experimentally thanks to powerful facilities. Consequently the results presented here are a fundamental tool for the high-energy density laboratory astrophysics community in order to quantify the astrophysics relevance and justify laser experiments. Moreover, relying on the Lie-group theory, this paper constitutes the starting point of any analysis of the self-similar dynamics of radiating fluids.Comment: Astrophys. J. accepte

    Link between laboratory and astrophysical radiative shocks

    Get PDF
    This work provides analytical solutions describing the post-shock structure of radiative shocks growing in astrophysics and in laboratory. The equations including a cooling function ΛρϵPζxθ\Lambda \propto \rho^{\epsilon} P^{\zeta} x^{\theta} are solved for any values of the exponents ϵ\epsilon, ζ\zeta and θ\theta. This modeling is appropriate to astrophysics as the observed radiative shocks arise in optically thin media. In contrast, in laboratory, radiative shocks performed using high-power lasers present a radiative precursor because the plasma is more or less optically thick. We study the post-shock region in the laboratory case and compare with astrophysical shock structure. In addition, we attempt to use the same equations to describe the radiative precursor, but the cooling function is slightly modified. In future experiments we will probe the PSR using X-ray diagnostics. These new experimental results will allow to validate our astrophysical numerical codes

    Quasi-periodic oscillations in accreting magnetic white dwarfs II. The asset of numerical modelling for interpreting observations

    Get PDF
    Magnetic cataclysmic variables are close binary systems containing a strongly magnetized white dwarf that accretes matter coming from an M-dwarf companion. High-energy radiation coming from those objects is emitted from the accretion column close to the white dwarf photosphere at the impact region. Its properties depend on the characteristics of the white dwarf and an accurate accretion column model allows the properties of the binary system to be inferred, such as the white dwarf mass, its magnetic field, and the accretion rate. We study the temporal and spectral behaviour of the accretion region and use the tools we developed to accurately connect the simulation results to the X-ray and optical astronomical observations. The radiation hydrodynamics code Hades was adapted to simulate this specific accretion phenomena. Classical approaches were used to model the radiative losses of the two main radiative processes: bremsstrahlung and cyclotron. The oscillation frequencies and amplitudes in the X-ray and optical domains are studied to compare those numerical results to observational ones. Different dimensional formulae were developed to complete the numerical evaluations. The complete characterization of the emitting region is described for the two main radiative regimes: when only the bremsstrahlung losses and when both cyclotron and bremsstrahlung losses are considered. The effect of the non-linear cooling in- stability regime on the accretion column behaviour is analysed. Variation in luminosity on short timescales (~ 1 s quasi-periodic oscillations) is an expected consequence of this specific dynamic. The importance of secondary shock instability on the quasi-periodic oscillation phenomenon is discussed. The stabilization effect of the cyclotron process is confirmed by our numerical simulations, as well as the power distribution in the various modes of oscillation.Comment: 13 pages, 13 figures, 2 tables. Accepted for publication in A&

    Wavelength-Dependent UV Photodesorption of Pure N2N_2 and O2O_2 Ices

    Get PDF
    Context: Ultraviolet photodesorption of molecules from icy interstellar grains can explain observations of cold gas in regions where thermal desorption is negligible. This non-thermal desorption mechanism should be especially important where UV fluxes are high. Aims: N2N_2 and O2O_2 are expected to play key roles in astrochemical reaction networks, both in the solid state and in the gas phase. Measurements of the wavelength-dependent photodesorption rates of these two infrared-inactive molecules provide astronomical and physical-chemical insights into the conditions required for their photodesorption. Methods: Tunable radiation from the DESIRS beamline at the SOLEIL synchrotron in the astrophysically relevant 7 to 13.6 eV range is used to irradiate pure N2N_2 and O2O_2 thin ice films. Photodesorption of molecules is monitored through quadrupole mass spectrometry. Absolute rates are calculated by using the well-calibrated CO photodesorption rates. Strategic N2N_2 and O2O_2 isotopolog mixtures are used to investigate the importance of dissociation upon irradiation. Results: N2N_2 photodesorption mainly occurs through excitation of the b1ub^1\sqcap_u state and subsequent desorption of surface molecules. The observed vibronic structure in the N2N_2 photodesorption spectrum, together with the absence of N3N_3 formation, supports that the photodesorption mechanism of N2N_2 is similar to CO, i.e., an indirect DIET (Desorption Induced by Electronic Transition) process without dissociation of the desorbing molecule. In contrast, O2O_2 photodesorption in the 7−13.6 eV range occurs through dissociation and presents no vibrational structure. Conclusions: Photodesorption rates of N2N_2 and O2O_2 integrated over the far-UV field from various star-forming environments are lower than for CO. Rates vary between 10310^{-3} and 10210^{-2} photodesorbed molecules per incoming photon.Astronom

    Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors

    Full text link
    We present results from new experiments to study the dynamics of radiative shocks, reverse shocks and radiative precursors. Laser ablation of a solid piston by the Orion high-power laser at AWE Aldermaston UK was used to drive radiative shocks into a gas cell initially pressurised between 0.10.1 and $1.0 \ bar with different noble gases. Shocks propagated at {80 \pm 10 \ km/s} and experienced strong radiative cooling resulting in post-shock compressions of { \times 25 \pm 2}. A combination of X-ray backlighting, optical self-emission streak imaging and interferometry (multi-frame and streak imaging) were used to simultaneously study both the shock front and the radiative precursor. These experiments present a new configuration to produce counter-propagating radiative shocks, allowing for the study of reverse shocks and providing a unique platform for numerical validation. In addition, the radiative shocks were able to expand freely into a large gas volume without being confined by the walls of the gas cell. This allows for 3-D effects of the shocks to be studied which, in principle, could lead to a more direct comparison to astrophysical phenomena. By maintaining a constant mass density between different gas fills the shocks evolved with similar hydrodynamics but the radiative precursor was found to extend significantly further in higher atomic number gases (\sim4$ times further in xenon than neon). Finally, 1-D and 2-D radiative-hydrodynamic simulations are presented showing good agreement with the experimental data.Comment: HEDLA 2016 conference proceeding
    corecore