606 research outputs found
CO ice photodesorption: A wavelength-dependent study
UV-induced photodesorption of ice is a non-thermal evaporation process that
can explain the presence of cold molecular gas in a range of interstellar
regions. Information on the average UV photodesorption yield of astrophysically
important ices exists for broadband UV lamp experiments. UV fields around
low-mass pre-main sequence stars, around shocks and in many other astrophysical
environments are however often dominated by discrete atomic and molecular
emission lines. It is therefore crucial to consider the wavelength dependence
of photodesorption yields and mechanisms. In this work, for the first time, the
wavelength-dependent photodesorption of pure CO ice is explored between 90 and
170 nm. The experiments are performed under ultra high vacuum conditions using
tunable synchrotron radiation. Ice photodesorption is simultaneously probed by
infrared absorption spectroscopy in reflection mode of the ice and by
quadrupole mass spectrometry of the gas phase. The experimental results for CO
reveal a strong wavelength dependence directly linked to the vibronic
transition strengths of CO ice, implying that photodesorption is induced by
electronic transition (DIET). The observed dependence on the ice absorption
spectra implies relatively low photodesorption yields at 121.6 nm (Ly-alpha),
where CO barely absorbs, compared to the high yields found at wavelengths
coinciding with transitions into the first electronic state of CO (singulet Pi
at 150 nm); the CO photodesorption rates depend strongly on the UV profiles
encountered in different star formation environments.Comment: 5 pages, 2 figures, published in ApJ
Quasi-periodic oscillations in accreting magnetic white dwarfs: I. Observational constraints in X-ray and optical
International audienceQuasi-periodic oscillations (QPOs) are observed in the optical flux of some polars with typical periods of 1 to 3 s but none have been observed yet in X-rays where a significant part of the accreting energy is released. QPOs are expected and predicted from shock oscillations. Most of the polars have been observed by the XMM-Newton satellite. We made use of the homogeneous set of observations of the polars by XMM-Newton to search for the presence of QPOs in the (0.5–10 keV) energy range and to set significant upper limits for the brightest X-ray polars. We extracted high time-resolution X-ray light curves by taking advantage of the 0.07 s resolution of the EPIC-PN camera. Among the 65 polars observed with XMM-Newton from 1998 to 2012, a sample of 24 sources was selected on the basis of their counting rate in the PN instrument to secure significant limits. We searched for QPOs using Fast Fourier Transform (FFT) methods and defined limits of detection using statistical tools. Among the sample surveyed, none shows QPOs at a significant level. Upper limits to the fractional flux in QPOs range from 7% to 71%. These negative results are compared to the detailed theoretical predictions of numerical simulations based on a 2D hydrodynamical code presented in Paper II. Cooling instabilities in the accretion column are expected to produce shock quasi-oscillations with a maximum amplitude reaching ~40% in the bremsstrahlung (0.5–10 keV) X-ray emission and ~20% in the optical cyclotron emission. The absence of X-ray QPOs imposes an upper limit of ~(5–10) g cm-2 s-1 on the specific accretion rate but this condition is found inconsistent with the value required to account for the amplitudes and frequencies of the observed optical QPOs. This contradiction outlines probable shortcomings with the shock instability model
Modeling multidimensional effects in the propagation of radiative shocks
Radiative shocks (also called supercritical shocks) are high Mach number shock waves that photoionize the medium ahead of the shock front and give rise to a radiative precursor. They are generated in the laboratory using high-energy or high-power lasers and are frequently present in a wide range of astronomical objects. Their modelisation in one dimension has been the subject of numerous studies, but generalization to three dimensions is not straightforward. We calculate analyticaly the absorption of radiation in a grey uniform cylinder and show how it decreases with , the product of the opacity and of the cylinder radius . Simple formulas, whose validity range increases when diminishes, are derived for the radiation field on the axis of symmetry. Numerical calculations in three dimensions of the radiative energy density, flux and pressure created by a stationary shock wave show how the radiation decreases whith . Finally, the bidimensional structures of both the precursor and the radiation field are calculated with time-dependent radiation hydrodynamics numerical simulations and the influence of two-dimensional effects on the electron density, the temperature, the shock velocity and the shock geometry are exhibited. These simulations show how the radiative precursor shortens, cools and slows down when is decreased
Indirect ultraviolet photodesorption from CO:N2 binary ices - an efficient grain-gas process
UV ice photodesorption is an important non-thermal desorption pathway in many
interstellar environments that has been invoked to explain observations of cold
molecules in disks, clouds and cloud cores. Systematic laboratory studies of
the photodesorption rates, between 7 and 14 eV, from CO:N2 binary ices, have
been performed at the DESIRS vacuum UV beamline of the synchrotron facility
SOLEIL. The photodesorption spectral analysis demonstrates that the
photodesorption process is indirect, i.e. the desorption is induced by a photon
absorption in sub-surface molecular layers, while only surface molecules are
actually desorbing. The photodesorption spectra of CO and N2 in binary ices
therefore depend on the absorption spectra of the dominant species in the
subsurface ice layer, which implies that the photodesorption efficiency and
energy dependence are dramatically different for mixed and layered ices
compared to pure ices. In particular, a thin (1-2 ML) N2 ice layer on top of CO
will effectively quench CO photodesorption, while enhancing N2 photodesorption
by a factors of a few (compared to the pure ices) when the ice is exposed to a
typical dark cloud UV field, which may help to explain the different
distributions of CO and N2H+ in molecular cloud cores. This indirect
photodesorption mechanism may also explain observations of small amounts of
complex organics in cold interstellar environments.Comment: 21 pages 5 figure
Similarity Properties and Scaling Laws of Radiation Hydrodynamic Flows in Laboratory Astrophysics
The spectacular recent development of modern high-energy density laboratory
facilities which concentrate more and more energy in millimetric volumes allows
the astrophysical community to reproduce and to explore, in millimeter-scale
targets and during very short times, astrophysical phenomena where radiation
and matter are strongly coupled. The astrophysical relevance of these
experiments can be checked from the similarity properties and especially
scaling laws establishment, which constitutes the keystone of laboratory
astrophysics. From the radiating optically thin regime to the so-called
optically thick radiative pressure regime, we present in this paper, for the
first time, a complete analysis of the main radiating regimes that we
encountered in laboratory astrophysics with the same formalism based on the
Lie-group theory. The use of the Lie group method appears as systematic which
allows to construct easily and orderly the scaling laws of a given problem.
This powerful tool permits to unify the recent major advances on scaling laws
and to identify new similarity concepts that we discuss in this paper and which
opens important applications for the present and the future laboratory
astrophysics experiments. All these results enable to demonstrate theoretically
that astrophysical phenomena in such radiating regimes can be explored
experimentally thanks to powerful facilities. Consequently the results
presented here are a fundamental tool for the high-energy density laboratory
astrophysics community in order to quantify the astrophysics relevance and
justify laser experiments. Moreover, relying on the Lie-group theory, this
paper constitutes the starting point of any analysis of the self-similar
dynamics of radiating fluids.Comment: Astrophys. J. accepte
Link between laboratory and astrophysical radiative shocks
This work provides analytical solutions describing the post-shock structure
of radiative shocks growing in astrophysics and in laboratory. The equations
including a cooling function are solved for any values of the exponents , and
. This modeling is appropriate to astrophysics as the observed
radiative shocks arise in optically thin media. In contrast, in laboratory,
radiative shocks performed using high-power lasers present a radiative
precursor because the plasma is more or less optically thick. We study the
post-shock region in the laboratory case and compare with astrophysical shock
structure. In addition, we attempt to use the same equations to describe the
radiative precursor, but the cooling function is slightly modified. In future
experiments we will probe the PSR using X-ray diagnostics. These new
experimental results will allow to validate our astrophysical numerical codes
Quasi-periodic oscillations in accreting magnetic white dwarfs II. The asset of numerical modelling for interpreting observations
Magnetic cataclysmic variables are close binary systems containing a strongly
magnetized white dwarf that accretes matter coming from an M-dwarf companion.
High-energy radiation coming from those objects is emitted from the accretion
column close to the white dwarf photosphere at the impact region. Its
properties depend on the characteristics of the white dwarf and an accurate
accretion column model allows the properties of the binary system to be
inferred, such as the white dwarf mass, its magnetic field, and the accretion
rate. We study the temporal and spectral behaviour of the accretion region and
use the tools we developed to accurately connect the simulation results to the
X-ray and optical astronomical observations. The radiation hydrodynamics code
Hades was adapted to simulate this specific accretion phenomena. Classical
approaches were used to model the radiative losses of the two main radiative
processes: bremsstrahlung and cyclotron. The oscillation frequencies and
amplitudes in the X-ray and optical domains are studied to compare those
numerical results to observational ones. Different dimensional formulae were
developed to complete the numerical evaluations. The complete characterization
of the emitting region is described for the two main radiative regimes: when
only the bremsstrahlung losses and when both cyclotron and bremsstrahlung
losses are considered. The effect of the non-linear cooling in- stability
regime on the accretion column behaviour is analysed. Variation in luminosity
on short timescales (~ 1 s quasi-periodic oscillations) is an expected
consequence of this specific dynamic. The importance of secondary shock
instability on the quasi-periodic oscillation phenomenon is discussed. The
stabilization effect of the cyclotron process is confirmed by our numerical
simulations, as well as the power distribution in the various modes of
oscillation.Comment: 13 pages, 13 figures, 2 tables. Accepted for publication in A&
Wavelength-Dependent UV Photodesorption of Pure and Ices
Context: Ultraviolet photodesorption of molecules from icy interstellar grains can explain observations of cold gas in regions where thermal desorption is negligible. This non-thermal desorption mechanism should be especially important where UV fluxes are high. Aims: and are expected to play key roles in astrochemical reaction networks, both in the solid state and in the gas phase. Measurements of the wavelength-dependent photodesorption rates of these two infrared-inactive molecules provide astronomical and physical-chemical insights into the conditions required for their photodesorption.
Methods: Tunable radiation from the DESIRS beamline at the SOLEIL synchrotron in the astrophysically relevant 7 to 13.6 eV range is used to irradiate pure and thin ice films. Photodesorption of molecules is monitored through quadrupole mass spectrometry. Absolute rates are calculated by using the well-calibrated CO photodesorption rates. Strategic and isotopolog mixtures are used to investigate the importance of dissociation upon irradiation. Results: photodesorption mainly occurs through excitation of the state and subsequent desorption of surface molecules. The observed vibronic structure in the photodesorption spectrum, together with the absence of formation, supports that the photodesorption mechanism of is similar to CO, i.e., an indirect DIET (Desorption Induced by Electronic Transition) process without dissociation of the desorbing molecule. In contrast, photodesorption in the 7−13.6 eV range occurs through dissociation and presents no vibrational structure. Conclusions: Photodesorption rates of and integrated over the far-UV field from various star-forming environments are lower than for CO. Rates vary between and photodesorbed molecules per incoming photon.Astronom
Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors
We present results from new experiments to study the dynamics of radiative
shocks, reverse shocks and radiative precursors. Laser ablation of a solid
piston by the Orion high-power laser at AWE Aldermaston UK was used to drive
radiative shocks into a gas cell initially pressurised between and $1.0 \
bar with different noble gases. Shocks propagated at {80 \pm 10 \ km/s} and
experienced strong radiative cooling resulting in post-shock compressions of {
\times 25 \pm 2}. A combination of X-ray backlighting, optical self-emission
streak imaging and interferometry (multi-frame and streak imaging) were used to
simultaneously study both the shock front and the radiative precursor. These
experiments present a new configuration to produce counter-propagating
radiative shocks, allowing for the study of reverse shocks and providing a
unique platform for numerical validation. In addition, the radiative shocks
were able to expand freely into a large gas volume without being confined by
the walls of the gas cell. This allows for 3-D effects of the shocks to be
studied which, in principle, could lead to a more direct comparison to
astrophysical phenomena. By maintaining a constant mass density between
different gas fills the shocks evolved with similar hydrodynamics but the
radiative precursor was found to extend significantly further in higher atomic
number gases (\sim4$ times further in xenon than neon). Finally, 1-D and 2-D
radiative-hydrodynamic simulations are presented showing good agreement with
the experimental data.Comment: HEDLA 2016 conference proceeding
- …