141 research outputs found

    Cyclin A is a prognostic indicator in early stage breast cancer with and without tamoxifen treatment

    Get PDF
    Overexpression of G1-S regulators cyclin D1 or cyclin A is frequently observed in breast cancer and is also to result in ligand-independent activation of oestrogen receptor in vitro. This might therefore, provide a mechanism for failure of tamoxifen treatment. We examined by immunohistochemical staining the effect of deregulation of these, and other cell cycle regulators on tamoxifen treatment in a group of 394 patients with early stage breast cancer. In univariate analysis, expression of cyclin A, Neu, Ki-67 index, and lack of OR expression were significantly associated with worse prognosis. When adjusted by the clinical model (for lymph node status, age, performance status, T-classification, grade, prior surgery, oestrogen receptor status and tamoxifen use), only overexpression of cyclin A and Neu were significantly associated with worse prognosis with hazard ratios of, respectively, 1.709 (P=0.0195) and 1.884 (P=0.0151). Overexpression of cyclin A was found in 86 out of the 201 OR-positive cases treated with tamoxifen, and was the only independent marker associated with worse prognosis (hazard ratio 2.024, P=0.0462). In conclusion, cyclin A is an independent predictor of recurrence of early stage breast cancer and is as such a marker for response in patients treated with tamoxifen

    Expression and subcellular localization of cyclin D1 protein in epithelial ovarian tumour cells

    Get PDF
    The expression of cyclin D1 protein in tumour sections from 81 patients with epithelial ovarian cancer was analysed using immunohistochemistry. The tumours that overexpressed cyclin D1 in more than 10% of neoplastic cells were considered positive. Thus overexpression of cyclin D1 was observed in 72/81 (89%) of the cases examined. Protein was detected in both the nucleus and the cytoplasm in 24/81 (30%) and localized exclusively in the cytoplasm in 48/81 (59%) of the tumours. Cyclin D1 was overexpressed in both borderline and invasive tumours. There was no association between protein overexpression and tumour stage and differentiation. Furthermore, no correlation between cyclin D1 expression and clinical outcome was observed. However, in tumours overexpressing cyclin D1 (n = 72), the proportion displaying exclusively cytoplasmic localization of protein was higher in those with serous compared with non-serous histology (P = 0.004, odds ratio 4.8, 95% confidence interval 1.4–19.1). Western analysis using a monoclonal antibody to cyclin D1 identified a 36 kDa protein in homogenates from seven tumours displaying cytoplasmic only and one tumour demonstrating both nuclear and cytoplasmic immunostaining. Using restriction fragment length polymorphism polymerase chain reaction and PCR-multiplex analysis, amplification of the cyclin D1 gene (CCNDI) was detected in 1/29 of the tumours demonstrating overexpression of cyclin D1 protein. We conclude that deregulation of CCND1 expression leading to both cytoplasmic and nuclear protein localization is a frequent event in ovarian cancer and occurs mainly in the absence of gene amplification. © 1999 Cancer Research Campaig

    Epigenetics and the estrogen receptor

    Get PDF
    The position effect variegation in Drosophila and Schizosaccharomyces pombe, and higher-order chromatin structure regulation in yeast, is orchestrated by modifier genes of the Su(var) group, (e.g., histone deacetylases ([HDACs]), protein phosphatases) and enhancer E(Var) group (e.g., ATP [adenosine 5\u27-triphosphate]-dependent nucleosome remodeling proteins). Higher-order chromatin structure is regulated in part by covalent modification of the N-terminal histone tails of chromatin, and histone tails in turn serve as platforms for recruitment of signaling modules that include nonhistone proteins such as heterochromatin protein (HP1) and NuRD. Because the enzymes governing chromatin structure through covalent modifications of histones (acetylation, methylation, phosphorylation, ubiquitination) can also target nonhistone substrates, a mechanism is in place by which epigenetic regulatory processes can affect the function of these alternate substrates. The posttranslational modification of histones, through phosphorylation and acetylation at specific residues, alters chromatin structure in an orchestrated manner in response to specific signals and is considered the basis of a histone code. In an analogous manner, specific residues within transcription factors form a signaling module within the transcription factor to determine genetic target specificity and cellular fate. The architecture of these signaling cascades in transcription factors (SCITs) are poorly understood. The regulation of estrogen receptor (ERalpha) by enzymes that convey epigenetic signals is carefully orchestrated and is reviewed here

    The estrogen receptor-α A908G (K303R) mutation occurs at a low frequency in invasive breast tumors: results from a population-based study

    Get PDF
    INTRODUCTION: Evidence suggests that alterations in estrogen signaling pathways, including estrogen receptor-α (ER-α), occur during breast cancer development. A point mutation in ER-α (nucleotide A908G), producing an amino acid change from lysine to arginine at codon 303 (K303R) results in receptor hypersensitivity to estrogen. This mutation was initially reported in one-third of hyperplastic benign breast lesions, although several recent studies failed to detect it in benign or malignant breast tissues. METHODS: We screened 653 microdissected, newly diagnosed invasive breast tumors from patients in the Carolina Breast Cancer Study, a population-based case-control study of breast cancer in African American and white women in North Carolina, for the presence of the ER-α A908G mutation by using single-strand conformational polymorphism (SSCP) analysis and (33)P-cycle sequencing. RESULTS: We detected the ER-α A908G mutation in 37 of 653 (5.7%) breast tumors. The absence of this mutation in germline DNA confirmed it to be somatic. Three tumors exhibited only the mutant G base at nucleotide 908 on sequencing, indicating that the wild-type ER-α allele had been lost. The ER-α A908G mutation was found more frequently in higher-grade breast tumors (odds ratio (OR) 2.83; 95% confidence interval (CI) 1.09 to 7.34, grade II compared with grade I), and in mixed lobular/ductal tumors (OR 2.10; 95% CI 0.86 to 5.12) compared with ductal carcinomas, although the latter finding was not statistically significant. CONCLUSION: This population-based study, the largest so far to screen for the ER-α A908G mutation in breast cancer, confirms the presence of the mutant in invasive breast tumors. The mutation was associated with higher tumor grade and mixed lobular/ductal breast tumor histology

    Expression of cell cycle proteins in male breast carcinoma

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Male breast cancer (MBC) is a rare, yet potentially aggressive disease. Although literature regarding female breast cancer (FBC) is extensive, little is known about the etiopathogenesis of male breast cancer. Studies from our laboratory show that MBCs have a distinct immunophenotypic profile, suggesting that the etiopathogenesis of MBC is different from FBCs. The aim of this study was to evaluate and correlate the immunohistochemical expression of cell cycle proteins in male breast carcinoma to significant clinico-biological endpoints.</p> <p>Methods</p> <p>75 cases of MBC were identified using the records of the Saskatchewan Cancer Agency over 26 years (1970-1996). Cases were reviewed and analyzed for the immunohistochemical expression of PCNA, Ki67, p27, p16, p57, p21, cyclin-D1 and c-myc and correlated to clinico-biological endpoints of tumor size, node status, stage of the disease, and disease free survival (DFS).</p> <p>Results</p> <p>Decreased DFS was observed in the majority of tumors that overexpressed PCNA (98%, p = 0.004). The overexpression of PCNA was inversely correlated to the expression of Ki67 which was predominantly negative (78.3%). Cyclin D1 was overexpressed in 83.7% of cases. Cyclin D1 positive tumors were smaller than 2 cm (55.6%, p = 0.005), had a low incidence of lymph node metastasis (38.2%, p = 0.04) and were associated with increased DFS of >150 months (p = 0.04). Overexpression of c-myc (90%) was linked with a higher incidence of node negativity (58.3%, p = 0.006) and increased DFS (p = 0.04). p27 over expression was associated with decreased lymph node metastasis (p = 0.04). P21 and p57 positive tumors were related to decreased DFS (p = 0.04). Though p16 was overexpressed in 76.6%, this did not reach statistical significance with DFS (p = 0.06) or nodal status (p = 0.07).</p> <p>Conclusion</p> <p>Aberrant cell cycle protein expression supports our view that these are important pathways involved in the etiopathogenesis of MBC. Tumors with overexpression of Cyclin D1 and c-myc had better outcomes, in contrast to tumors with overexpression of p21, p57, and PCNA with significantly worse outcomes. P27 appears to be a predictive marker for lymph nodal status. Such observation strongly suggests that dysregulation of cell cycle proteins may play a unique role in the initiation and progression of disease in male breast cancer. Such findings open up new avenues for the treatment of MBC as a suitable candidate for novel CDK-based anticancer therapies in the future.</p

    Alpha-santalol, a chemopreventive agent against skin cancer, causes G2/M cell cycle arrest in both p53-mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>α-Santalol, an active component of sandalwood oil, has shown chemopreventive effects on skin cancer in different murine models. However, effects of α-santalol on cell cycle have not been studied. Thus, the objective of this study was to investigate effects of α-santalol on cell cycle progression in both p53 mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells to elucidate the mechanism(s) of action.</p> <p>Methods</p> <p>MTT assay was used to determine cell viability in A431 cells and UACC-62; fluorescence-activated cell sorting (FACS) analysis of propidium iodide staining was used for determining cell cycle distribution in A431 cells and UACC-62 cells; immunoblotting was used for determining the expression of various proteins and protein complexes involved in the cell cycle progression; siRNA were used to knockdown of p21 or p53 in A431 and UACC-62 cells and immunofluorescence microscopy was used to investigate microtubules in UACC-62 cells.</p> <p>Results</p> <p>α-Santalol at 50-100 μM decreased cell viability from 24 h treatment and α-santalol at 50 μM-75 μM induced G<sub>2</sub>/M phase cell cycle arrest from 6 h treatment in both A431 and UACC-62 cells. α-Santalol altered expressions of cell cycle proteins such as cyclin A, cyclin B1, Cdc2, Cdc25c, p-Cdc25c and Cdk2. All of these proteins are critical for G<sub>2</sub>/M transition. α-Santalol treatment up-regulated the expression of p21 and suppressed expressions of mutated p53 in A431 cells; whereas, α-santalol treatment increased expressions of wild-type p53 in UACC-62 cells. Knockdown of p21 in A431 cells, knockdown of p21 and p53 in UACC-62 cells did not affect cell cycle arrest caused by α-santalol. Furthermore, α-santalol caused depolymerization of microtubules similar to vinblastine in UACC-62 cells.</p> <p>Conclusions</p> <p>This study for the first time identifies effects of α-santalol in G<sub>2</sub>/M phase arrest and describes detailed mechanisms of G<sub>2</sub>/M phase arrest by this agent, which might be contributing to its overall cancer preventive efficacy in various mouse skin cancer models.</p

    P53 expression is significantly correlated with high risk of malignancy and epithelioid differentiation in GISTs. An immunohistochemical study of 104 cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular analyses of the <it>c-kit </it>and <it>PDGFRα </it>genes have contributed greatly to our understanding of the development of gastrointestinal stromal tumors (GISTs), but little is known about their malignant potential. The aim of our study was to evaluate cell cycle regulators as potential prognostic markers in GISTs.</p> <p>Methods</p> <p>We investigated 104 KIT positive GISTs from various tumor sites in immunoassays on CD34, Ki67 and particularly on P53, BCL-2 and Cyclin D1. The results were compared with tumor size, mitotic rate, proliferative activity, histological subtype, nuclear atypia and risk assessment according to Fletcher and Miettinen. Occurrence of metastases and survival were also taken into account.</p> <p>Results</p> <p>The expression of P53 was significantly correlated with high risk criteria towards malignancy and epithelioid differentiation in GISTs. Likewise P53 label correlated significantly with the established prognostic indicators: tumor size, mitotic rate, nuclear atypia and proliferative activity. Regarding the site of tumor presentation, P53 was not a decisive factor. BCL-2 and Cyclin D1 expression was not related to any of the prognostic indicators.</p> <p>Conclusion</p> <p>The present data identified P53 being a recommendable marker for predicting the risk of malignancy in GISTs. In addition, we found P53 significantly correlated with epithelioid tumor differentiation, independent of tumor site. BCL-2 and Cyclin D1, however, did not prove to be deciding markers for diagnosis and prognosis.</p
    • …
    corecore