12 research outputs found

    Role of impedance drop and lesion size index (LSI) to guide catheter ablation for atrial fibrillation

    Get PDF
    Background: When using lesion size index (LSI) to guide catheter ablation, it is unclear what combination of power, contact force and time would be preferable to use and what LSI target value to aim for. This study aimed at identifying desirable ablation settings and LSI targets by using tissue impedance drop as indicator of lesion formation. Methods: Consecutive patients, undergoing their first left atrial (LA) catheter ablation for atrial fibrillation, with radiofrequency energy (RF) powers of 20, 30 and 40 W were enrolled. Tissue impedance, contact force (CF), Force Time Integral (FTI) and LSI values were continuously recorded during ablation and sampled at 100 Hz. Mean CF and Contact Force Variability (CFV) were calculated for every lesion. The effect of RF power, ablation time, CF and CFV on impedance drop and LSI were assessed. Results: A total of 3258 lesions were included in the analysis. For any target LSI value, use of higher RF powers translated into progressively higher impedance drops. The impact of lower CF and higher CFV on impedance drop was more relevant when using lower powers. Target LSI values corresponding to maximum impedance drop were identified depending on RF power, mean CF and CFV used. Conclusions: Even in the context of an LSI‐guided ablation strategy, use of lower or higher powers might lead to different lesion sizes. Different LSI targets might be needed depending on the combination of RF power, CF and CFV used for ablation. Incorporating indicators of catheter stability, like CFV, in the LSI formula could improve the predictive value of LSI for lesion size. Studies with clinical outcomes are required to confirm the clinical relevance of these findings

    INtra-procedural ultraSound Imaging for DEtermination of atrial wall thickness and acute tissue changes after isolation of the pulmonary veins with radiofrequency, cryoballoon or laser balloon energy: the INSIDE PVs study

    No full text
    Preliminary data in human suggest that both Intracardiac echocardiography (ICE) and Intravascular ultrasound (IVUS) can be used for real-time information on the left atrial (LA) wall thickness and on the acute tissue changes produced by energy delivery. This pilot study was conducted to compare ICE and IVUS for real-time LA wall imaging and assessment of acute tissue changes produced by radiofrequency (RF), cryo and laser catheter ablation. Patients scheduled for RF, cryoballoon or laser balloon Pulmonary Vein Isolation (PVI) catheter ablation were enrolled. Each pulmonary vein (PV) was imaged before and immediately after ablation with either ICE or IVUS. The performance of ICE and IVUS for imaging were compared. Pre- and post-ablation measurements (lumen and vessel diameters, areas and sphericity indexes, wall thickness and muscular sleeve thickness) were taken at the level of each PV ostium. A total of 48 PVs in 12 patients were imaged before and after ablation. Both ICE and IVUS showed acute tissue changes. Compared to IVUS, ICE showed higher imaging quality and inter-observer reproducibility of the PV measurements obtained. Acute wall thickening suggestive of oedema was observed after RF treatment (p = 0.003) and laser treatment (p = 0.003) but not after cryoablation (p = 0.69). Our pilot study suggests that ICE might be preferable to IVUS for LA wall thickness imaging at the LA-PV junctions during ablation. Ablation causes acute wall thickening when using RF or laser energy, but not cryoenergy delivery. Larger studies are needed to confirm these preliminary findings

    Validation of novel 3-dimensional electrocardiographic mapping of atrial tachycardias by invasive mapping and ablation: a multicenter study

    Get PDF
    OBJECTIVES This study prospectively evaluated the role of a novel 3-dimensional, noninvasive, beat-by-beat mapping system, Electrocardiographic Mapping (ECM), in facilitating the diagnosis of atrial tachycardias (AT). BACKGROUND Conventional 12-lead electrocardiogram, a widely used noninvasive tool in clinical arrhythmia practice, has diagnostic limitations. METHODS Various AT (de novo and post-atrial fibrillation ablation) were mapped using ECM followed by standard-of-care electrophysiological mapping and ablation in 52 patients. The ECM consisted of recording body surface electrograms from a 252-electrode-vest placed on the torso combined with computed tomography-scan-based biatrial anatomy (CardioInsight Inc., Cleveland, Ohio). We evaluated the feasibility of this system in defining the mechanism of AT-macro-re-entrant (perimitral, cavotricuspid isthmus-dependent, and roof-dependent circuits) versus centrifugal (focal-source) activation-and the location of arrhythmia in centrifugal AT. The accuracy of the noninvasive diagnosis and detection of ablation targets was evaluated vis-à-vis subsequent invasive mapping and successful ablation. RESULTS Comparison between ECM and electrophysiological diagnosis could be accomplished in 48 patients (48 AT) but was not possible in 4 patients where the AT mechanism changed to another AT (n = 1), atrial fibrillation (n = 1), or sinus rhythm (n = 2) during the electrophysiological procedure. ECM correctly diagnosed AT mechanisms in 44 of 48 (92%) AT: macro-re-entry in 23 of 27; and focal-onset with centrifugal activation in 21 of 21. The region of interest for focal AT perfectly matched in 21 of 21 (100%) AT. The 2:1 ventricular conduction and low-amplitude P waves challenged the diagnosis of 4 of 27 macro-re-entrant (perimitral) AT that can be overcome by injecting atrioventricular node blockers and signal averaging, respectively. CONCLUSIONS This prospective multicenter series shows a high success rate of ECM in accurately diagnosing the mechanism of AT and the location of focal arrhythmia. Intraprocedural use of the system and its application to atrial fibrillation mapping is under way
    corecore