18 research outputs found

    Stability of Alum-Containing Paper under Alkaline Conditions

    No full text
    The present contribution evaluates the methods of degradation and stabilization of alum-containing paper with a focus on the alkaline environment achieved by deacidification procedures. In terms of reviewed subjects, the contribution focuses on alum-rosin sized paper, which is still used as a carrier of knowledge and information; however, it also mentions cellulose itself and other brands of paper. The contribution summarizes the results on the homogeneity of the distribution of alum and rosin in the paper mass and on the paper surface. It provides the knowledge gained in the field of alkaline hydrolysis and oxidation with special regard to transition metal species. It shows the values of alkaline reserves achieved in the main mass-deacidification processes. On the basis of the acquired knowledge, the contribution emphasizes the procedures of paper stabilization. Criteria of “increased mechanical permanence and lifetime prolongation” adopted to evaluate and compare the efficacy of individual mass-deacidification processes were applied and corresponding data are introduced. The contribution also draws attention to the existence of open issues in the area of paper degradation and stabilization

    Is it Correct to Name DESs Deep Eutectic Solvents?

    No full text
    Recent years of research and development have brought frequently used terms for new types of green solvents to the lexicon of scientists. This can lead to terminological inaccuracies. In particular, different names are being used for the same types of solvents: Deep Eutectic Solvents (DES); Natural Deep Eutectic Solvents; Low-Transition Temperature Mixtures; Low-Melting Mixtures. It would, therefore, be appropriate to eliminate certain inaccuracies and to use simplification, which means using the general term “Low-Temperature Transition Mixtures” or introducing the term “DES-like mixtures”

    Use of Deep Eutectic Solvents in Polymer Chemistry–A Review

    No full text
    This review deals with two overlapping issues, namely polymer chemistry and deep eutectic solvents (DESs). With regard to polymers, specific aspects of synthetic polymers, polymerization processes producing such polymers, and natural cellulose-based nanopolymers are evaluated. As for DESs, their compliance with green chemistry requirements, their basic properties and involvement in polymer chemistry are discussed. In addition to reviewing the state-of-the-art for selected kinds of polymers, the paper reveals further possibilities in the employment of DESs in polymer chemistry. As an example, the significance of DES polarity and polymer polarity to control polymerization processes, modify polymer properties, and synthesize polymers with a specific structure and behavior, is emphasized

    Summarizing the Effect of Acidity and Water Content of Deep Eutectic Solvent-like Mixtures—A Review

    No full text
    Deep eutectic solvent-like (DES-like) mixtures re-emerged in green chemistry nineteen years ago and yet have led to a large number of publications covering different research areas and different application industries. DES-like mixtures are considered a special class of green solvents because of their unique properties, such as high solubilization ability, remarkable biocompatibility, low production cost, low volatility, relatively simple synthesis methods, and considerable stability. Several studies have been published that analyze the effect of acidity/alkalinity and water content in DES-like mixtures on their physicochemical properties and behavior. This work summarizes the characterization of green solvents and, subsequently, the influence of various factors on the resulting pH values of green solvent systems. Part of this work describes the influence of water content in DES-like mixtures on their physical and chemical properties. The acidity/alkalinity effect is very important for green solvent applications, and it has the main impact on chemical reactions. As the temperature increases, the pH of DES-like mixtures decreases linearly. The type of hydrogen bond donors has been shown to have an important effect on the acidity of DES-like mixtures. The water content also affects their properties (polarity, solubilization capacity of DES-like mixtures)

    Summarizing the Effect of Acidity and Water Content of Deep Eutectic Solvent-like Mixtures—A Review

    No full text
    Deep eutectic solvent-like (DES-like) mixtures re-emerged in green chemistry nineteen years ago and yet have led to a large number of publications covering different research areas and different application industries. DES-like mixtures are considered a special class of green solvents because of their unique properties, such as high solubilization ability, remarkable biocompatibility, low production cost, low volatility, relatively simple synthesis methods, and considerable stability. Several studies have been published that analyze the effect of acidity/alkalinity and water content in DES-like mixtures on their physicochemical properties and behavior. This work summarizes the characterization of green solvents and, subsequently, the influence of various factors on the resulting pH values of green solvent systems. Part of this work describes the influence of water content in DES-like mixtures on their physical and chemical properties. The acidity/alkalinity effect is very important for green solvent applications, and it has the main impact on chemical reactions. As the temperature increases, the pH of DES-like mixtures decreases linearly. The type of hydrogen bond donors has been shown to have an important effect on the acidity of DES-like mixtures. The water content also affects their properties (polarity, solubilization capacity of DES-like mixtures)

    About Hydrophobicity of Lignin: A Review of Selected Chemical Methods for Lignin Valorisation in Biopolymer Production

    No full text
    Lignin is the second most abundant renewable natural polymer that occurs on Earth, and as such, it should be widely utilised by industries in a variety of applications. However, these applications and possible research seem to be limited or prevented by a variety of factors, mainly the high heterogeneity of lignin. Selective modifications of the structure and of functional groups allow better properties in material applications, whereas the separation of different qualitative lignin groups permits selective application in industry. This review is aimed at modification of the lignin structure, increasing the hydrophobicity of the produced materials, and focusing on several perspective modifications for industrial-scale production of lignin-based polymers, as well as challenges, opportunities, and other important factors to take into consideration

    Deep Eutectic Solvents: Fractionation of Wheat Straw

    No full text
    Deep eutectic solvents (DESs) are a relatively new topic in science. Their usage is not yet clearly defined, and the areas in which DESs may be applied are constantly growing. A simple and clean fractionation of the main components of biomass represents a very important step in creating a clean, renewable carbon economy. A major challenge is the use of DESs for fractionation of biomass components at lower temperatures, without the use of expensive raw materials. In this work, wheat straw was pretreated with six different DES systems composed of choline chloride with urea (1:2), malonic acid (1:1), lactic (1:9; 1:10), malic (1:1), and oxalic acid (1:1). The pretreated biomass was characterized in terms of lignin content, ash, and holocellulose. A deep eutectic solvent, composed of choline chloride and oxalic acid, was found to produce the best delignification results. The solvents are not selective in the process of delignification

    About Hydrophobicity of Lignin: A Review of Selected Chemical Methods for Lignin Valorisation in Biopolymer Production

    No full text
    Lignin is the second most abundant renewable natural polymer that occurs on Earth, and as such, it should be widely utilised by industries in a variety of applications. However, these applications and possible research seem to be limited or prevented by a variety of factors, mainly the high heterogeneity of lignin. Selective modifications of the structure and of functional groups allow better properties in material applications, whereas the separation of different qualitative lignin groups permits selective application in industry. This review is aimed at modification of the lignin structure, increasing the hydrophobicity of the produced materials, and focusing on several perspective modifications for industrial-scale production of lignin-based polymers, as well as challenges, opportunities, and other important factors to take into consideration

    Cellulose Materials Identification: The Effect of Dimensionality of Colour Photography Data

    No full text
    This paper describes a simple rapid staining microcolorimetric method for analytical fibre material identification using colour vectors of stained fibre material photography. The number of morphological characteristics (nM), number of stains (nS), colour information dimensionality (nDC), and picture elementary points number (npx) can play a key role in distinguishing fibre materials, correct identification, discriminatory power dP (%), and efficacy. Experiments were performed to achieve the most accurate results with a minimum volume of data; the dimensionality reduction was made experimentally by setting nM = 0, nS = 1, nDC , and the effect of number of pixels on the dP (%) was measured. The correct identification was achieved by less than 100 pixels when using 2 colour vectors, and by less than 50 pixels when using 3 colour vectors: R, G, and B. The real area of the pixels used for correct identification was less than 0.1 mm2 in the used model system of the cellulose fibre materials

    Involvement of Deep Eutectic Solvents in Extraction by Molecularly Imprinted Polymers—A Minireview

    No full text
    Substantial research activity has been focused on new modes of extraction and refining processes during the last decades. In this field, coverage of the recovery of bioactive compounds and the role of green solvents such as deep eutectic solvents (DESs) also gradually increases. A specific field of DESs involvement is represented by molecularly imprinted polymers (MIPs). The current state and prospects of implementing DESs in MIPs chemistry are, based on the accumulated experimental data so far, evaluated and discussed in this minireview
    corecore