5 research outputs found

    Medium-term temporal stability of the helminth component community structure in bank voles (Clethrionomys glareolus) from the Mazury Lake District region of Poland

    Get PDF
    The structure of helminth communities in wild rodents is subject to seasonal variation, and is dependent on host age within years. Although between-year variation has been monitored, seldom has it been assessed rigorously by appropriate multifactorial analysis with potentially confounding factors taken into account. In this study we tested the null hypothesis that despite seasonal, host age and sex effects, helminth communities should show relative stability between years. Over a period of 3 years (1998–2000) we sampled bank vole (Clethrionomys glareolus) populations (total n=250) at 2 points in the year: in spring, at the start of the breeding season, and in autumn, after the cessation of breeding. In spite of seasonal differences and strong age effects, the between-year effects were surprisingly small. Measures of component community structure (Berger- Parker dominance index, the dominant species, S. petrusewiczi) did not vary, or varied only slightly from year to year. The majority of measures of infracommunity structure [Brillouin’s index of diversity, prevalence of all helminths combined, prevalence and abundance of H. mixtum (the most prevalent helminth), mean species richness] did not differ significantly between years when other factors such as age, sex and seasonal variation had been taken into account. Some between-year variations were found (at the component community level, Simpson’s index of diversity ; at the infracommunity level, prevalence and abundance of S. petrusewiczi and abundance of all helminths combined), but even these were modest in comparison to seasonal and age differences, and were primarily attributable to S. petrusewiczi. We conclude that despite dynamic within-year fluctuations, helminth communities in bank voles in this region of Poland show relative stability across years. The sporadic occurrence of individual platyhelminths at low prevalence, makes little difference to the overall structure, which is largely maintained by the key roles played by the dominant intestinal nematodes of bank voles and the rarer species collectively

    Nucleoside triphosphate diphosphohydrolase-1 ectonucleotidase is required for normal vas deferens contraction and male fertility through maintaining P2X1 receptor function

    Get PDF
    In this work, we report that Entpd1(-/-) mice, deficient for the ectonucleotidase nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), produce smaller litters (27% reduction) compared with wild-type C57BL6 animals. This deficit is linked to reduced in vivo oocyte fertilization by Entpd1(-/-) males (61 ± 11% versus 88 ± 7% for Entpd1(+/+)). Normal epididymal sperm count, spermatozoa morphology, capacitation, and motility and reduced ejaculated sperm number (2.4 ± 0.5 versus 3.7 ± 0.4 million for Entpd1(+/+)) pointed to vas deferens dysfunction. NTPDase1 was localized by immunofluorescence in the tunica muscularis of the vas deferens. Its absence resulted in a major ATP hydrolysis deficiency, as observed in situ by histochemistry and in primary smooth muscle cell cultures. In vitro, Entpd1(-/-) vas deferens displayed an exacerbated contraction to ATP, a diminished response to its non-hydrolysable analog αβMeATP, and a reduced contraction to electrical field stimulation, suggesting altered P2X1 receptor function with a propensity to desensitize. This functional alteration was accompanied by a 3-fold decrease in P2X1 protein expression in Entpd1(-/-) vas deferens with no variation in mRNA levels. Accordingly, exogenous nucleotidase activity was required to fully preserve P2X1 receptor activation by ATP in vitro. Our study demonstrates that NTPDase1 is required to maintain normal P2X1 receptor functionality in the vas deferens and that its absence leads to impaired peristalsis, reduced spermatozoa concentration in the semen, and, eventually, reduced fertility. This suggests that alteration of NTPDase1 activity affects ejaculation efficacy and male fertility. This work may contribute to unveil a cause of infertility and open new therapeutic potentials

    Nucleoside triphosphate diphosphohydrolase-1 ectonucleotidase is required for normal vas deferens contraction and male fertility through maintaining P2X1 receptor function.

    Get PDF
    In this work, we report that Entpd1(-/-) mice, deficient for the ectonucleotidase nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), produce smaller litters (27% reduction) compared with wild-type C57BL6 animals. This deficit is linked to reduced in vivo oocyte fertilization by Entpd1(-/-) males (61 ± 11% versus 88 ± 7% for Entpd1(+/+)). Normal epididymal sperm count, spermatozoa morphology, capacitation, and motility and reduced ejaculated sperm number (2.4 ± 0.5 versus 3.7 ± 0.4 million for Entpd1(+/+)) pointed to vas deferens dysfunction. NTPDase1 was localized by immunofluorescence in the tunica muscularis of the vas deferens. Its absence resulted in a major ATP hydrolysis deficiency, as observed in situ by histochemistry and in primary smooth muscle cell cultures. In vitro, Entpd1(-/-) vas deferens displayed an exacerbated contraction to ATP, a diminished response to its non-hydrolysable analog αβMeATP, and a reduced contraction to electrical field stimulation, suggesting altered P2X1 receptor function with a propensity to desensitize. This functional alteration was accompanied by a 3-fold decrease in P2X1 protein expression in Entpd1(-/-) vas deferens with no variation in mRNA levels. Accordingly, exogenous nucleotidase activity was required to fully preserve P2X1 receptor activation by ATP in vitro. Our study demonstrates that NTPDase1 is required to maintain normal P2X1 receptor functionality in the vas deferens and that its absence leads to impaired peristalsis, reduced spermatozoa concentration in the semen, and, eventually, reduced fertility. This suggests that alteration of NTPDase1 activity affects ejaculation efficacy and male fertility. This work may contribute to unveil a cause of infertility and open new therapeutic potentials
    corecore