276 research outputs found
An Iterative Shrinkage Approach to Total-Variation Image Restoration
The problem of restoration of digital images from their degraded measurements
plays a central role in a multitude of practically important applications. A
particularly challenging instance of this problem occurs in the case when the
degradation phenomenon is modeled by an ill-conditioned operator. In such a
case, the presence of noise makes it impossible to recover a valuable
approximation of the image of interest without using some a priori information
about its properties. Such a priori information is essential for image
restoration, rendering it stable and robust to noise. Particularly, if the
original image is known to be a piecewise smooth function, one of the standard
priors used in this case is defined by the Rudin-Osher-Fatemi model, which
results in total variation (TV) based image restoration. The current arsenal of
algorithms for TV-based image restoration is vast. In the present paper, a
different approach to the solution of the problem is proposed based on the
method of iterative shrinkage (aka iterated thresholding). In the proposed
method, the TV-based image restoration is performed through a recursive
application of two simple procedures, viz. linear filtering and soft
thresholding. Therefore, the method can be identified as belonging to the group
of first-order algorithms which are efficient in dealing with images of
relatively large sizes. Another valuable feature of the proposed method
consists in its working directly with the TV functional, rather then with its
smoothed versions. Moreover, the method provides a single solution for both
isotropic and anisotropic definitions of the TV functional, thereby
establishing a useful connection between the two formulae.Comment: The paper was submitted to the IEEE Transactions on Image Processing
on October 22nd, 200
Dynamic Denoising of Tracking Sequences
©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2008.920795In this paper, we describe an approach to the problem of simultaneously enhancing image sequences and tracking the objects of interest represented by the latter. The enhancement part of the algorithm is based on Bayesian wavelet denoising, which has been chosen due to its exceptional ability to incorporate diverse a priori information into the process of image recovery. In particular, we demonstrate that, in dynamic settings, useful statistical priors can come both from some reasonable assumptions on the properties of the image to be enhanced as well as from the images that have already been observed before the current scene. Using such priors forms the main contribution of the present paper which is the proposal of the dynamic denoising as a tool for simultaneously enhancing and tracking image sequences.Within the proposed framework, the previous observations of a dynamic scene are employed to enhance its present observation. The mechanism that allows the fusion of the information within successive image frames is Bayesian estimation, while transferring the useful information between the images is governed by a Kalman filter that is used for both prediction and estimation of the dynamics of tracked objects. Therefore, in this methodology, the processes of target tracking and image enhancement "collaborate" in an interlacing manner, rather than being applied separately. The dynamic denoising is demonstrated on several examples of SAR imagery. The results demonstrated in this paper indicate a number of advantages of the proposed dynamic denoising over "static" approaches, in which the tracking images are enhanced independently of each other
Blind deconvolution of medical ultrasound images: parametric inverse filtering approach
©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.910179The problem of reconstruction of ultrasound images by means of blind deconvolution has long been recognized as one of the central problems in medical ultrasound imaging. In this paper, this problem is addressed via proposing a blind deconvolution method which is innovative in several ways. In particular, the method is based on parametric inverse filtering, whose parameters are optimized using two-stage processing. At the first stage, some partial information on the point spread function is recovered. Subsequently, this information is used to explicitly constrain the spectral shape of the inverse filter. From this perspective, the proposed methodology can be viewed as a ldquohybridizationrdquo of two standard strategies in blind deconvolution, which are based on either concurrent or successive estimation of the point spread function and the image of interest. Moreover, evidence is provided that the ldquohybridrdquo approach can outperform the standard ones in a number of important practical cases. Additionally, the present study introduces a different approach to parameterizing the inverse filter. Specifically, we propose to model the inverse transfer function as a member of a principal shift-invariant subspace. It is shown that such a parameterization results in considerably more stable reconstructions as compared to standard parameterization methods. Finally, it is shown how the inverse filters designed in this way can be used to deconvolve the images in a nonblind manner so as to further improve their quality. The usefulness and practicability of all the introduced innovations are proven in a series of both in silico and in vivo experiments. Finally, it is shown that the proposed deconvolution algorithms are capable of improving the resolution of ultrasound images by factors of 2.24 or 6.52 (as judged by the autocorrelation criterion) depending on the type of regularization method used
Image Segmentation Using Weak Shape Priors
The problem of image segmentation is known to become particularly challenging
in the case of partial occlusion of the object(s) of interest, background
clutter, and the presence of strong noise. To overcome this problem, the
present paper introduces a novel approach segmentation through the use of
"weak" shape priors. Specifically, in the proposed method, an segmenting active
contour is constrained to converge to a configuration at which its geometric
parameters attain their empirical probability densities closely matching the
corresponding model densities that are learned based on training samples. It is
shown through numerical experiments that the proposed shape modeling can be
regarded as "weak" in the sense that it minimally influences the segmentation,
which is allowed to be dominated by data-related forces. On the other hand, the
priors provide sufficient constraints to regularize the convergence of
segmentation, while requiring substantially smaller training sets to yield less
biased results as compared to the case of PCA-based regularization methods. The
main advantages of the proposed technique over some existing alternatives is
demonstrated in a series of experiments.Comment: 27 pages, 8 figure
Image Segmentation Using Active Contours Driven by the Bhattacharyya Gradient Flow
©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.908073This paper addresses the problem of image segmentation by means of active contours, whose evolution is driven by the gradient flow derived froman energy functional that is based on the Bhattacharyya distance. In particular, given the values of a photometric variable (or of a set thereof), which is to be used for classifying the image pixels, the active contours are designed to converge to the shape that results in maximal discrepancy between the empirical distributions of the photometric variable inside and outside of the contours. The above discrepancy is measured by means of the Bhattacharyya distance that proves to be an extremely useful tool for solving the problem at hand. The proposed methodology can be viewed as a generalization of the segmentation methods, in which active contours maximize the difference between a finite number of empirical moments of the "inside" and "outside" distributions. Furthermore, it is shown that the proposed methodology is very versatile and flexible in the sense that it allows one to easily accommodate a diversity of the image features based on which the segmentation should be performed. As an additional contribution, a method for automatically adjusting the smoothness properties of the empirical distributions is proposed. Such a procedure is crucial in situations when the number of data samples (supporting a certain segmentation class) varies considerably in the course of the evolution of the active contour. In this case, the smoothness properties of the empirical distributions have to be properly adjusted to avoid either over- or underestimation artifacts. Finally, a number of relevant segmentation results are demonstrated and some further research directions are discussed
- …