6 research outputs found
Hematogenous infantile infection presenting as osteomyelitis and septic arthritis: a case report
The case of a 6-month old male infant presenting at the emergency department with fever and swelling at the left knee joint is discussed. Laboratory tests showed an inflammatory condition. Left knee plain radiograph demonstrated local soft tissue oedema. Percutaneous needle aspiration of articular fluid showed a positive culture for Staphylococcus aureus. The diagnosis of septic arthritis was confirmed. Because of inadequate response to treatment an MRI study was followed to evaluate possible abscesses. The presence of an abscess in the suprapatellar bursa was confirmed and an additional inflammatory process of the bone marrow was revealed, consistent with osteomyelitis. The pathophysiology, the imaging findings, the patient’s management and a review of septic arthritis and osteomyelitis coexistence are presented in this paper
Microencapsulation of Fluticasone Propionate and Salmeterol Xinafoate in Modified Chitosan Microparticles for Release Optimization
Chitosan (CS) is a natural polysaccharide, widely studied in the past due to its unique properties such as biocompatibility, biodegradability and non-toxicity. Chemical modification of CS is an effective pathway to prepare new matrices with additional functional groups and improved properties, such as increment of hydrophilicity and swelling rate, for drug delivery purposes. In the present study, four derivatives of CS with trans-aconitic acid (t-Acon), succinic anhydride (Succ), 2-hydroxyethyl acrylate (2-HEA) and acrylic acid (AA) were prepared, and their successful grafting was confirmed by FTIR and 1H-NMR spectroscopies. Neat chitosan and its grafted derivatives were fabricated for the encapsulation of fluticasone propionate (FLU) and salmeterol xinafoate (SX) drugs, used for chronic obstructive pulmonary disease (COPD), via the ionotropic gelation technique. Scanning electron microscopy (SEM) micrographs demonstrated that round-shaped microparticles (MPs) were effectively prepared with average sizes ranging between 0.4 and 2.2 μm, as were measured by dynamic light scattering (DLS), while zeta potential verified in all cases their positive charged surface. FTIR spectroscopy showed that some interactions take place between the drugs and the polymeric matrices, while X-ray diffraction (XRD) patterns exhibited that both drugs were encapsulated in MPs’ interior with a lower degree of crystallinity than the neat drugs. In vitro release studies of FLU and SX exposed a great amelioration in the drugs’ dissolution profile from all modified CS’s MPs, in comparison to those of neat drugs. The latter fact is attributed to the reduction in crystallinity of the active substances in the MPs’ interior
Effect of Poly(vinyl alcohol) on Nanoencapsulation of Budesonide in Chitosan Nanoparticles via Ionic Gelation and Its Improved Bioavailability
Chitosan (CS) is a polymer extensively used in drug delivery formulations mainly due to its biocompatibility and low toxicity. In the present study, chitosan was used for nanoencapsulation of a budesonide (BUD) drug via the well-established ionic gelation technique and a slight modification of it, using also poly(vinyl alcohol) (PVA) as a surfactant. Scanning electron microscopy (SEM) micrographs revealed that spherical nanoparticles were successfully prepared with average sizes range between 363 and 543 nm, as were measured by dynamic light scattering (DLS), while zeta potential verified their positive charged surface. X-ray diffraction (XRD) patterns revealed that BUD was encapsulated in crystalline state in nanoparticles but with a lower degree of crystallinity than the neat drug, which was also proven by differential scanning calorimetry (DSC) and melting peak measurements. This could be attributed to interactions that take place between BUD and CS, which were revealed by FTIR and by an extended computational study. An in vitro release study of budesonide showed a slight enhancement in the BUD dissolution profile, compared to the neat drug. However, drug release was substantially increased by introducing PVA during the nanoencapsulation procedure, which is attributed to the higher amorphization of BUD on these nanoparticles. The release curves were analyzed using a diffusion model that allows estimation of BUD diffusivity in the nanoparticles
Chitosan and its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments
Chitosan (CS) is a hemi-synthetic cationic linear polysaccharide produced by the deacetylation of chitin. CS is non-toxic, highly biocompatible, and biodegradable, and it has a low immunogenicity. Additionally, CS has inherent antibacterial properties and a mucoadhesive character and can disrupt epithelial tight junctions, thus acting as a permeability enhancer. As such, CS and its derivatives are well-suited for the challenging field of ocular drug delivery. In the present review article, we will discuss the properties of CS that contribute to its successful application in ocular delivery before reviewing the latest advances in the use of CS for the development of novel ophthalmic delivery systems. Colloidal nanocarriers (nanoparticles, micelles, liposomes) will be presented, followed by CS gels and lenses and ocular inserts. Finally, instances of CS coatings, aiming at conferring mucoadhesiveness to other matrixes, will be presented
Urban Biodiversity Index for Trees: A Climate Adaptation Measure for Cities Based on Tree Inventories
A historically large percentage of the world’s population has moved to urban areas in the past few decades, causing various negative effects for the environment, such as air, noise, water, and light pollution; land degradation; and biodiversity loss. Under the current climate crisis, cities are anticipated to play an essential part in adaptation strategies to extreme atmospheric events. This study aims at developing indicators at an urban scale that can highlight adaptation progress by investigating relevant data (especially in situ) and statistics at a pan-European level in support of the EU’s strategy for adapting to the impacts of climate change. The proposed indicator, Urban Biodiversity Indicator for Trees (UBI4T), which can be derived from city tree inventories, assesses one essential component of urban biodiversity by computing the proportion of native, alien, invasive, and toxic tree species spatially across a city. According to our findings (applying the UBI4T for Amsterdam and exploring its policy potential for Barcelona), the UBI4T can offer crucial information for decision and policy makers, as well as stakeholders of a city, with the aim of conducting dedicated and effective strategic initiatives to restore, improve, and protect nature in the urban environment, thus contributing to adaptation and resilience to extreme atmospheric events in cities