56 research outputs found

    Experimental and numerical study of the response of the offshore combined wind/wave energy concept SFC in extreme environmental conditions

    Get PDF
    This paper deals with an experimental study of the survivability of the offshore combined concept Semisubmersible wind energy and Flap-type wave energy Converter (SFC) and with comparisons of the experimental data with numerical predictions. The SFC is a combined energy concept consisting of a braceless semisubmersible type floating wind turbine and three fully submerged rotating flap-type Wave Energy Converters (WECs). In order to study the survivability of the concept the focus is on extreme environmental conditions. In these conditions the SFC will not produce wind or wave power; the wind turbine is parked with the blades feathered into the wind and the WECs are released to freely rotate about their axis of rotation. Firstly the development and set-up of the physical model are presented. Static, quasi-static, decay, regular waves and irregular waves with wind loading tests are conducted on an 1:50 scale physical model. Aligned and oblique wave with wind loading conditions are considered. Measured variables that are presented include motions of the semisubmersible platform in six rigid body degrees of freedom, rotation of the flap-type WECs, tension of mooring lines, internal loads of the arms that connect the flap with the pontoon of the platform and tower base bending moment. The experimental data are compared with numerical predictions obtained by a fully coupled numerical model. The comparison is made at model scale. A good agreement between experimental data and numerical predictions is observed confirming the accuracy of the numerical models and tools that are used. The discrepancy between numerical and experimental results is smaller for regular than irregular waves. Compared to oblique conditions a better agreement between experimental and numerical results is obtained for the case of aligned wave and wind loadings. The results obtained demonstrate the good performance of the SFC concept in extreme environmental conditions. No strong nonlinear hydrodynamic phenomena are observed in the tests

    Sporangiospore Size Dimorphism Is Linked to Virulence of Mucor circinelloides

    Get PDF
    Mucor circinelloides is a zygomycete fungus and an emerging opportunistic pathogen in immunocompromised patients, especially transplant recipients and in some cases otherwise healthy individuals. We have discovered a novel example of size dimorphism linked to virulence. M. circinelloides is a heterothallic fungus: (+) sex allele encodes SexP and (−) sex allele SexM, both of which are HMG domain protein sex determinants. M. circinelloides f. lusitanicus (Mcl) (−) mating type isolates produce larger asexual sporangiospores that are more virulent in the wax moth host compared to (+) isolates that produce smaller less virulent sporangiospores. The larger sporangiospores germinate inside and lyse macrophages, whereas the smaller sporangiospores do not. sexMΔ mutants are sterile and still produce larger virulent sporangiospores, suggesting that either the sex locus is not involved in virulence/spore size or the sexP allele plays an inhibitory role. Phylogenetic analysis supports that at least three extant subspecies populate the M. circinelloides complex in nature: Mcl, M. circinelloides f. griseocyanus, and M. circinelloides f. circinelloides (Mcc). Mcc was found to be more prevalent among clinical Mucor isolates, and more virulent than Mcl in a diabetic murine model in contrast to the wax moth host. The M. circinelloides sex locus encodes an HMG domain protein (SexP for plus and SexM for minus mating types) flanked by genes encoding triose phosphate transporter (TPT) and RNA helicase homologs. The borders of the sex locus between the three subspecies differ: the Mcg sex locus includes the promoters of both the TPT and the RNA helicase genes, whereas the Mcl and Mcc sex locus includes only the TPT gene promoter. Mating between subspecies was restricted compared to mating within subspecies. These findings demonstrate that spore size dimorphism is linked to virulence of M. circinelloides species and that plasticity of the sex locus and adaptations in pathogenicity have occurred during speciation of the M. circinelloides complex

    Treatment of pistachios with boric acid, Zn-sulfate and Zn-chelate

    No full text
    We studied the effect of boric acid, Zn-sulfate and Zn-chelate on shell split and development of fruit rot diseases of the pistachio cultivar Eginis. The results showed that boric acid applied to soil and leaves together gave the highest percentage of shell split. Boric acid applied solely to the soil also increased significantly the percentage of shell split. In contrast, Zn-sulfate and Zn-chelate did not affect shell splitting, regardless of treatment No rotten fruit was found in any of the treatments, including the control

    Quantification of the aflatoxin biocontrol strain Aspergillus flavus AF36 in soil, and nuts and leaves of pistachio by real-time PCR

    No full text
    Published online: 26 Apr 2021The species Aspergillus flavus and A. parasiticus are commonly found in the soils of nut-growing areas in California. Several isolates can produce aflatoxins that occasionally contaminate nut kernels conditioning their sale. The strain AF36 of A. flavus, which does not produce aflatoxins, is registered as a biocontrol agent for use in almond, pistachio, and fig crops in California. After application in the orchards, AF36 displaces aflatoxin-producing Aspergillus spp. and thus reduces aflatoxin contamination. Vegetative compatibility assays (VCA) have traditionally been used to track AF36 in soils and crops where it has been applied. However, VCA is labor-intensive and time-consuming. Here, we developed a quantitative real-time PCR (qPCR) protocol to quantify proportions of AF36 accurately and efficiently in different substrates. Specific primers to target AF36 and toxigenic strains of A. flavus and A. parasiticus were designed based on sequence of aflC, a gene essential for aflatoxin biosynthesis. Standard curves were generated to calculate proportions of AF36 based on threshold values (Cq). Verification assays using pure DNA and conidial suspension mixtures demonstrated a significant relationship by regression analysis between known and qPCR-measured AF36 proportions in DNA (R2 = 0.974; P < 0.001) and conidia mixtures (R2 = 0.950; P < 0.001). The tests conducted by qPCR in pistachio leaves, nuts, and soil samples demonstrated the usefulness of the qPCR method to precisely quantify proportions of AF36 in diverse substrates, ensuring important time and cost savings. The outputs of the current study will serve to design better aflatoxin management strategies for pistachio and other crops

    Distribution and incidence of atoxigenic Aspergillus flavus VCG in tree crop orchards in California: a strategy for identifying potential antagonists, the example of almonds

    No full text
    Published online: 21 Oct 2017To identify predominant isolates for potential use as biocontrol agents, Aspergillus flavus isolates collected from soils of almond, pistachio and fig orchard in the Central Valley of California were tested for their membership to 16 atoxigenic vegetative compatibility groups (VCGs), including YV36, the VCG to which AF36, an atoxigenic isolate commercialized in the United States as biopesticide, belongs. A surprisingly large proportion of isolates belonged to YV36 (13.3%, 7.2% and 6.6% of the total almond, pistachio and fig populations, respectively), while the percentage of isolates belonging to the other 15 VCGs ranged from 0% to 2.3%. In order to gain a better insight into the structure and diversity of atoxigenic A. flavus populations and to further identify predominant isolates, seventeen SSR markers were then used to genetically characterize AF36, the 15 type-isolates of the VCGs and 342 atoxigenic isolates of the almond population. There was considerable genetic diversity among isolates with a lack of differentiation among micro-geographical regions or years. Since isolates sharing identical SSR profiles from distinct orchards were rare, we separated them into groups of at least 3 closely-related isolates from distinct orchards that shared identical alleles for at least 15 out of the 17 loci. This led to the identification of 15 groups comprising up to 24 closely-related isolates. The group which contained the largest number of isolates were members of YV36 while five groups were also found to be members of our studied atoxigenic VCGs. These results suggest that these 15 groups, and AF36 in particular, are well adapted to various environmental conditions in California and to tree crops and, as such, are good candidates for use as biocontrol agents
    • …
    corecore