10 research outputs found

    A Review of Hydroponics and Conventional Agriculture Based on Energy and Water Consumption, Environmental Impact, and Land Use

    No full text
    The increasing demand for food, the lack of natural resources and arable land, and the recent restrictions on energy consumption require an immediate solution in terms of agricultural activities. This paper’s objective was to review hydroponics (a new soilless cultivation technology) and compare it with conventional agriculture (soil cultivation) regarding its environmental impact and water and energy consumption. The soil loss, the crop/soil contamination, and the greenhouse gas emissions were the criteria for the environmental comparison of conventional agriculture and hydroponics. As for resource consumption, the water consumption rates (L/kg), energy consumption rates (kWh), and energy required (kW) were the criteria for comparing conventional agriculture with hydroponics. Tomato and cannabis cultivation were used as case studies in this review. The review results showed that the advantages of hydroponics over conventional cultivation include zero-soil cultivation, land-use efficiency, planting environment cleanliness, fertilizer and resource saving, water consumption reduction, and conservation. The disadvantages of hydroponics versus conventional cultivation were found to include the high investment costs, technical know-how requirements, and higher amount of demanded energy

    A Review of Hydroponics and Conventional Agriculture Based on Energy and Water Consumption, Environmental Impact, and Land Use

    No full text
    The increasing demand for food, the lack of natural resources and arable land, and the recent restrictions on energy consumption require an immediate solution in terms of agricultural activities. This paper’s objective was to review hydroponics (a new soilless cultivation technology) and compare it with conventional agriculture (soil cultivation) regarding its environmental impact and water and energy consumption. The soil loss, the crop/soil contamination, and the greenhouse gas emissions were the criteria for the environmental comparison of conventional agriculture and hydroponics. As for resource consumption, the water consumption rates (L/kg), energy consumption rates (kWh), and energy required (kW) were the criteria for comparing conventional agriculture with hydroponics. Tomato and cannabis cultivation were used as case studies in this review. The review results showed that the advantages of hydroponics over conventional cultivation include zero-soil cultivation, land-use efficiency, planting environment cleanliness, fertilizer and resource saving, water consumption reduction, and conservation. The disadvantages of hydroponics versus conventional cultivation were found to include the high investment costs, technical know-how requirements, and higher amount of demanded energy

    A Systematic Analysis of Phase Change Material and Optically Advanced Roof Coatings Integration for Athenian Climatic Conditions

    No full text
    Energy retrofit solutions that concern a building’s roof structure play a significant role in the enhancement of a building’s thermal behaviour. This study investigates the integration of phase change materials (PCMs) with cool coatings (CCs) or thermochromic coatings (TCCs), namely, a PCM roof, a PCM-CC roof, and a PCM-TCC roof, as alternative and novel tactics for the simultaneous control of solar heat transfer and solar heat reflection. An energy simulation analysis with the DesignBuilder tool is conducted for a one-story residence and the climatic conditions of Athens. The simulation results indicate that, compared to the existing concrete roof construction, the PCM roof, PCM-CC, and PCM-TCC roof systems demonstrate energy savings that reach up to 13.55%, 16.04%, and 21.70%, respectively. The systematic analysis reveals that the increase in PCM’s thickness leads to an increase in the total electricity savings of the buildings, but in the case of PCM-CC and PCM-TCC roof systems, they merely effect the cooling thermal loads. The mean phase transition temperature that favours the cumulative electricity savings is 28 °C in the case of PCM and PCM-TCC roof systems and 35 °C in the case of PCM-CC roof systems. The methodology of this study allows the design of efficient, integrated roof systems with advanced thermal and optical properties as energy retrofit solutions for Mediterranean climatic conditions

    Thermodynamic and economic analysis of a supermarket transcritical CO2 refrigeration system coupled with solar-fed supercritical CO2 Brayton and organic Rankine cycles

    No full text
    Aiming to reduce the use of conventional energy sources, alternative methods should be applied in order to cover society’s needs. In this context, in the present study, the operation of a transcritical CO2 commercial refrigeration unit is investigated, coupled with two power production cycles. The first cycle is a supercritical CO2 Brayton system that is supplied with heat by a solar field including parabolic trough collectors, while the second one is an organic Rankine cycle, utilizing as a heat source the low enthalpy CO2 exiting the first cycle. The novelty of this system is attributed to the combination an advanced transcritical CO2 refrigeration system with power production cycles that operate under the optimal conditions, as well as to the reason that the operation of the refrigeration unit is independent from the solar energy, since it can provide refrigeration output regardless of the solar heat input. The results prove that the increased number of solar collectors leads to more advantageous power production results, although with higher capital costs. Furthermore, greater energy production is noted when the ambient temperature is lower and abundant solar power is available. For the case of installing five solar collectors and an organic Rankine cycle, it is found that the annual energy production of the total system is 173.72 MWh, while the annual energy consumption of the refrigeration unit is 466.66 MWh, meaning that 37.23 % of energy savings are achieved annually. For the same configuration, according to the life cycle cost analysis, the capital cost is found equal to 243.72 k€, leading to a payback period of 7.6 years. By the end of the project’s lifetime, the operation of the installed system returns 298.42 k€ to the investor

    Testing the performance of a prototype thermal energy storage tank working with organic phase change material for space heating application conditions

    No full text
    A prototype Latent Heat Thermal Energy Storage (LHTES) unit has been designed, constructed, and experimentally analysed for its thermal storage performance under different operational conditions considering heating application and exploiting solar and geothermal energy. The system consists of a rectangular tank filled with Phase Change Material (PCM) and a finned tube staggered Heat Exchanger (HE) while water is used as Heat Transfer Fluid (HTF). Different HTF inlet temperatures and flow rates were tested to find out their effects on LHTES performance. Thermal quantities such as HTF outlet temperature, heat transfer rate, stored energy, were evaluated as a function of the conditions studied. Two commercial organic PCMs were tested A44 and A46. Results indicate that A44 is more efficient during the charging period, taking into account the two energy sources, solar and heat pump. During the discharging process, it exhibits higher storage capacity than A46. Concluding, the developed methodology can be applied to study different PCMs and building applications

    Computational Approach of Charging and Discharging Phases in a Novel Compact Solar Collector with Integrated Thermal Energy Storage Tank: Study of Different Phase Change Materials

    No full text
    A numerical study was carried out to investigate charging and discharging processes of different phase change materials (PCMs) used for thermal storage in an innovative solar collector, targeting domestic hot water (DHW) requirements. The aim was to study PCMs that meet all application requirements, considering their thermal performance in terms of stored and retrieved energy, outlet temperatures, and water flow rate. Work was carried out for three flat-plate solar panels of different sizes. For each panel, a PCM tank with a heat exchanger was attached on the back plate. Simulations were conducted on a 2D domain using the enthalpy–porosity technique. Three paraffin-based PCMs were studied, two (A53, P53) with phase-change temperatures of approximately 53 °C and one of approximately 58 °C (A58H). Results showed that, during charging, A58H can store the most energy and A53 the least (12.30 kWh and 10.54 kWh, respectively, for the biggest unit). However, the biggest unit, A58H, takes the most time to be fully charged, i.e., 6.43 h for the fastest feed rate, while the A53 unit charges the fastest, at 4.25 h. The behavior of P53 lies in between A53 and A58H, considering stored energy and charging time. During discharging, all PCMs could provide an adequate DHW amount, even in the worst case, that is, a small unit with a high hot water consumption rate. The A58H unit provides hot water above 40 °C for 10 min, P53 for 11 min, and A53 for 12 min. The DHW production duration increased if a bigger unit was used or if the consumption rate was lower

    Investigation of a High-Temperature Heat Pump for Heating Purposes

    No full text
    High-temperature heat pumps consist of a promising choice for substituting conventional boilers and producing hot water with temperature levels in the range of 70–80 °C. The use of high-temperature heat pumps makes it possible to exploit the existing radiators in existing buildings to achieve effective heating of the indoor space and keep thermal comfort at high standards. The goal of this work is the detailed investigation of a high-temperature heat pump, with the R1234ze(E) as the working medium for producing heating at 80 °C for space-heating purposes, in Greek climate conditions. The analysis was conducted at two locations, one in the south (Athens—Zone B) and one in the north (Thessaloniki—Zone C), in order to examine the performance of the study’s technology in the most representative locations of Greece. The thermodynamic analysis of the heat pump was performed with a developed model in Engineering Equation Solver by exploiting real data from the compressor manufacturer and by practically using a gray box model. The heating thermal loads were calculated with a dynamic analysis using TRNSYS software. According to the final results, the high-temperature heat pump was beneficial when compared to a conventional oil boiler from energy, financial, and environmental points of view. The net savings were found at EUR 6448 for Athens and EUR 13,161 for Thessaloniki; the simple payback period resulted in 8.03 years for Athens and 6.11 years for Thessaloniki, while the CO2 emissions avoidance was found at 35% for Athens and 32% for Thessaloniki. Last but not least, the lifetime CO2 emissions reduction was calculated at 20,882 kgCO2 for Athens and 35,278 kgCO2 for Thessaloniki

    Computational Approach of Charging and Discharging Phases in a Novel Compact Solar Collector with Integrated Thermal Energy Storage Tank: Study of Different Phase Change Materials

    No full text
    A numerical study was carried out to investigate charging and discharging processes of different phase change materials (PCMs) used for thermal storage in an innovative solar collector, targeting domestic hot water (DHW) requirements. The aim was to study PCMs that meet all application requirements, considering their thermal performance in terms of stored and retrieved energy, outlet temperatures, and water flow rate. Work was carried out for three flat-plate solar panels of different sizes. For each panel, a PCM tank with a heat exchanger was attached on the back plate. Simulations were conducted on a 2D domain using the enthalpy–porosity technique. Three paraffin-based PCMs were studied, two (A53, P53) with phase-change temperatures of approximately 53 °C and one of approximately 58 °C (A58H). Results showed that, during charging, A58H can store the most energy and A53 the least (12.30 kWh and 10.54 kWh, respectively, for the biggest unit). However, the biggest unit, A58H, takes the most time to be fully charged, i.e., 6.43 h for the fastest feed rate, while the A53 unit charges the fastest, at 4.25 h. The behavior of P53 lies in between A53 and A58H, considering stored energy and charging time. During discharging, all PCMs could provide an adequate DHW amount, even in the worst case, that is, a small unit with a high hot water consumption rate. The A58H unit provides hot water above 40 °C for 10 min, P53 for 11 min, and A53 for 12 min. The DHW production duration increased if a bigger unit was used or if the consumption rate was lower

    Latent Thermal Energy Storage Application in a Residential Building at a Mediterranean Climate

    No full text
    An innovative thermal energy storage system (TESSe2b) was retrofitted in a residential building in Cyprus with a typical Mediterranean climate. The system comprises flat-plate solar collectors, thermal energy storage tanks filled with organic phase change material, a geothermal installation consisting of borehole heat exchangers with and without phase change material and a ground source heat pump, an advanced self-learning control system, backup devices and several other auxiliary components. The thermal energy storage tanks cover the building’s needs at certain temperature ranges (10–17 °C for cooling, 38–45 °C for heating and 50–60 °C for domestic hot water). A performance evaluation was conducted by comparing the TESSe2b system with the existing conventional heating and cooling system. The systems were simulated using commercial software, and the performance of the systems and the building’s energy needs were calculated. Based on the energy quantities, an economic analysis followed. The equivalent annual primary energy consumption with the conventional system resulted in being 43335 kWh, while for the storage system, it was only 8398 kWh. The payback period for the storage system was calculated to be equal to 9.76 years. The operation of the installed storage system provided data for calculations of the seasonal performance factor and storage performance. The seasonal performance factor values were very high during June, July and August, since the TESSe2b system works very efficiently in cooling mode due to the very high temperatures that dominate in Cyprus. The measured stored thermal energy for cooling, heating and domestic hot water resulted in being 14.5, 21.9 and 6.2 kWh, respectively. Moreover, the total volume of the phase change material thermal energy storage tanks for heating and domestic hot water was calculated to be roughly several times smaller than the volume of a tank with water as a storage medium
    corecore