10 research outputs found

    Fate map of the dental mesenchyme: Dynamic development of the dental papilla and follicle

    Get PDF
    AbstractAt the bud stage of tooth development the neural crest derived mesenchyme condenses around the dental epithelium. As the tooth germ develops and proceeds to the cap stage, the epithelial cervical loops grow and appear to wrap around the condensed mesenchyme, enclosing the cells of the forming dental papilla. We have fate mapped the dental mesenchyme, using in vitro tissue culture combined with vital cell labelling and tissue grafting, and show that the dental mesenchyme is a much more dynamic population then previously suggested. At the bud stage the mesenchymal cells adjacent to the tip of the bud form both the dental papilla and dental follicle. At the early cap stage a small population of highly proliferative mesenchymal cells in close proximity to the inner dental epithelium and primary enamel knot provide the major contribution to the dental papilla. These cells are located between the cervical loops, within a region we have called the body of the enamel organ, and proliferate in concert with the epithelium to create the dental papilla. The condensed dental mesenchymal cells that are not located between the body of the enamel organ, and therefore are at a distance from the primary enamel knot, contribute to the dental follicle, and also the apical part of the papilla, where the roots will ultimately develop. Some cells in the presumptive dental papilla at the cap stage contribute to the follicle at the bell stage, indicating that the dental papilla and dental follicle are still not defined populations at this stage. These lineage-tracing experiments highlight the difficulty of targeting the papilla and presumptive odontoblasts at early stages of tooth development. We show that at the cap stage, cells destined to form the follicle are still competent to form dental papilla specific cell types, such as odontoblasts, and produce dentin, if placed in contact with the inner dental epithelium. Cell fate of the dental mesenchyme at this stage is therefore determined by the epithelium

    Lineage tracing of the endoderm during oral development

    No full text
    Background: The contribution of the endoderm to the oral tissues of the head has been debated for many years. With the arrival of Cre/LoxP technology endoderm progenitor cells can now be genetically labeled and tissues derived from the endoderm traced. Using Sox17-2A-iCre/Rosa26 reporter mice we have followed the fate of the endoderm in the teeth, glands, and taste papillae of the oral cavity. Results: No contribution of the endoderm was observed at any stage of tooth development, or in development of the major salivary glands, in the reporter mouse during development. In contrast, the minor mucous glands of the tongue were found to be of endodermal origin, along with the circumvallate papilla and foliate papillae. The mucous minor salivary glands of the palate, however, were of mixed ectodermal and endodermal origin. Conclusions: In contrast to urodele studies, the epithelium of murine teeth is derived solely from the ectoderm. The border between the ectoderm- and endoderm-derived epithelium may play a role in determining the position of the lingual glands and taste buds, and may explain differences observed between taste buds in the anterior and posterior part of the tongue

    Patterning of palatal rugae through sequential addition reveals an anterior/posterior boundary in palatal development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of the secondary palate has been a main topic in craniofacial research, as its failure results in cleft palate, one of the most common birth defects in human. Nevertheless, palatal rugae (or <it>rugae palatinae</it>), which are transversal ridges developing on the secondary palate, received little attention. However, rugae could be useful as landmarks to monitor anterior/posterior (A/P) palatal growth, and they provide a simple model of mesenchymal-epithelial structures arranged in a serial pattern.</p> <p>Results</p> <p>We first determined in which order the nine mouse rugae appear during development. Our results revealed a reiterative process, which is coupled with A/P growth of palatal shelves, and by which rugae 3 to 7b are sequentially interposed, in the increasing distance between the second most anterior ruga, ruga 2, and the two most posterior rugae, rugae 8 and 9. We characterized the steps of ruga interposition in detail, showing that a new ruga forms from an active zone of high proliferation rate, next to the last formed ruga. Then, by analyzing the polymorphism of wild type and Eda<sup>Ta</sup> mutant mice, we suggest that activation-inhibition mechanisms may be involved in positioning new rugae, like for other skin appendages. Finally, we show that the ruga in front of which new rugae form, i.e. ruga 8 in mouse, coincides with an A/P gene expression boundary in the palatal shelves (<it>Shox2</it>/<it>Meox2-Tbx22</it>). This coincidence is significant, since we also found it in hamster, despite differences in the adult ruga pattern of these two species.</p> <p>Conclusion</p> <p>We showed that palatal rugae are sequentially added to the growing palate, in an interposition process that appears to be dependent on activation-inhibition mechanisms and reveals a new developmental boundary in the growing palate. Further studies on rugae may help to shed light on both the development and evolution of structures arranged in regular patterns. Moreover, rugae will undoubtedly be powerful tools to further study the anteroposterior regionalization of the growing palate.</p
    corecore