2 research outputs found

    Culturable diversity and antimicrobial activity of Actinobacteria from marine sediments in Valparaíso bay, Chile

    Get PDF
    Marine-derived Actinobacteria are a source of a broad variety of secondary metabolites with diverse biological activities, such as antibiotics and antitumorals; many of which have been developed for clinical use. Rare Actinobacteria represent an untapped source of new bioactive compounds that have been scarcely recognized. In this study, rare Actinobacteria from marine sediments were isolated from the Valparaíso bay, Chile, and their potential to produce antibacterial compounds was evaluated. Different culture conditions and selective media that select the growth of Actinobacteria were used leading to the isolation of 68 bacterial strains. Comparative analysis of the 16S rRNA gene sequences led to identifying isolates that belong to the phylum Actinobacteria with genetic affiliations to 17 genera: Aeromicrobium, Agrococcus, Arthrobacter, Brachybacterium, Corynebacterium, Dietzia, Flaviflexus, Gordonia, Isoptericola, Janibacter, Microbacterium, Mycobacterium, Ornithinimicrobium, Pseudonocardia, Rhodococcus, Streptomyces and Tessaracoccus. Also, one isolate could not be consistently classified and formed a novel phylogenetic branch related to the Nocardiopsaceae family. The antimicrobial activity of these isolates was evaluated, demonstrating the capability of specific novel isolates to inhibit the growth of Gram-positive and Gram-negative bacteria. In conclusion, this study shows a rich biodiversity of culturable Actinobacteria, associated to marine sediments from Valparaíso bay, highlighting novel rare Actinobacteria, and their potential for the production of biologically active compounds

    A stereotaxic, population-averaged T1w ovine brain atlas including cerebral morphology and tissue volumes

    No full text
    Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight, age and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and body weight explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species
    corecore