192 research outputs found
Disorder-Assisted Electron-Phonon Scattering and Cooling Pathways in Graphene
We predict that graphene is a unique system where disorder-assisted
scattering (supercollisions) dominates electron-lattice cooling over a wide
range of temperatures, up to room temperature. This is so because for
momentum-conserving electron-phonon scattering the energy transfer per
collision is severely constrained due to a small Fermi surface size. The
characteristic temperature dependence and power-law cooling dynamics
provide clear experimental signatures of this new cooling mechanism. The
cooling rate can be changed by orders of magnitude by varying the amount of
disorder which offers means for a variety of new applications that rely on
hot-carrier transport.Comment: 4 pgs, 2 fg
Evaluation of a multi-marker immunomagnetic enrichment assay for the quantification of circulating melanoma cells
Background: Circulating melanoma cells (CMCs) are thought to be valuable in improving measures of prognosis in melanoma patients and may be a useful marker of residual disease to identify non-metastatic patients requiring adjuvant therapy. We investigated whether immunomagnetic enrichment targeting multiple markers allows more efficient enrichment of CMCs from patient peripheral blood than targeting a single marker. Furthermore, we aimed to determine whether the number of CMCs in patient blood was associated with disease stage.Methods: We captured CMCs by targeting the melanoma associated markers MCSP and MCAM as well as the melanoma stem cell markers ABCB5 and CD271, both individually and in combination, by immunomagnetic enrichment. CMCs were enriched and quantified from the peripheral blood of 10 non-metastatic and 13 metastatic melanoma patients.Results: Targeting all markers in combination resulted in the enrichment of more CMCs than when any individual marker was targeted (p \u3c 0.001-0.028). Furthermore, when a combination of markers was targeted, a greater number of CMCs were enriched in metastatic patients compared with non-metastatic patients (p = 0.007).Conclusions: Our results demonstrated that a combination of markers should be targeted for optimal isolation of CMCs. In addition, there are significantly more CMCs in metastatic patients compared with non-metastatic patients and therefore quantification of CMCs may prove to be a useful marker of disease progression
Evaluation of a multi-marker immunomagnetic enrichment assay for the quantification of circulating melanoma cells
Background: Circulating melanoma cells (CMCs) are thought to be valuable in improving measures of prognosis in melanoma patients and may be a useful marker of residual disease to identify non-metastatic patients requiring adjuvant therapy. We investigated whether immunomagnetic enrichment targeting multiple markers allows more efficient enrichment of CMCs from patient peripheral blood than targeting a single marker. Furthermore, we aimed to determine whether the number of CMCs in patient blood was associated with disease stage.Methods: We captured CMCs by targeting the melanoma associated markers MCSP and MCAM as well as the melanoma stem cell markers ABCB5 and CD271, both individually and in combination, by immunomagnetic enrichment. CMCs were enriched and quantified from the peripheral blood of 10 non-metastatic and 13 metastatic melanoma patients.Results: Targeting all markers in combination resulted in the enrichment of more CMCs than when any individual marker was targeted (p \u3c 0.001-0.028). Furthermore, when a combination of markers was targeted, a greater number of CMCs were enriched in metastatic patients compared with non-metastatic patients (p = 0.007).Conclusions: Our results demonstrated that a combination of markers should be targeted for optimal isolation of CMCs. In addition, there are significantly more CMCs in metastatic patients compared with non-metastatic patients and therefore quantification of CMCs may prove to be a useful marker of disease progression
Advances in personalized targeted treatment of metastatic melanoma and non-invasive tumor monitoring
Despite extensive scientific progress in the melanoma field, treatment of advanced stage melanoma with chemotherapeutics and biotherapeutics has rarely provided response rates higher than 20%. In the past decade, targeted inhibitors have been developed for metastatic melanoma, leading to the advent of more personalized therapies of genetically characterized tumors. Here we review current melanoma treatments and emerging targeted molecular therapies. In particular we discuss the mutant BRAF inhibitors Vemurafenib and Dabrafenib, which markedly inhibit tumor growth and advance patients’ overall survival. However this response is almost inevitably followed by complete tumor relapse due to drug resistance hampering the encouraging initial responses. Several mechanisms of resistance within and outside the MAPK pathway have now been uncovered and have paved theway for clinical trials of combination therapies to try and overcome tumor relapse. It is apparent that personalized treatment management will be required in this new era of targeted treatment. Circulating tumor cells (CTCs) provide an easily accessible means of monitoring patient relapse and several new approaches are available for the molecular characterization of CTCs. Thus CTCs provide a monitoring tool to evaluate treatment efficacy and early detection of drug resistance in real time.We detail here how advances in the molecular analysis of CTCs may provide insight into new avenues of approaching therapeutic options that would benefit personalized melanoma management
Is the blood an alternative for programmed cell death ligand 1 assessment in non-small cell lung cancer?
Anti-programmed cell death (PD)-1/PD-ligand 1 (L1) therapies have significantly improved the outcomes for non-small cell lung cancer (NSCLC) patients in recent years. These therapies work by reactivating the immune system and enabling it to target cancer cells once more. There is a general agreement that expression of PD-L1 on tumour cells predicts the therapeutic response to PD-1/PD-L1 inhibitors in NSCLC. Hence, immunohistochemical staining of tumour tissue biopsies from NSCLC patients with PD-L1 antibodies is the current standard used to aid selection of patients for treatment with anti-PD-1 as first line therapy. However, issues of small tissue samples, tissue heterogeneity, the emergence of new metastatic sites, and dynamic changes in the expression of PD-L1 may influence PD-L1 status during disease evolution. Re-biopsy would expose patients to the risk of complications and tardy results. Analysis of PD-L1 expression on circulating tumour cells (CTCs) may provide an accessible and non-invasive means to select patients for anti-PD-1 therapies. Additionally, CTCs could potentially provide a useful biomarker in their own right. Several published studies have assessed PD-L1 expression on CTCs from NSCLC patients. Overall, analysis of PD-L1 on CTCs is feasible and could be detected prior to and after frontline therapy. However, there is no evidence on whether PD-L1 expression on CTCs could predict the response to anti-PD-1/PD-L1 treatment. This review examines the challenges that need to be addressed to demonstrate the clinical validity of PD-L1 analysis in CTCs as a biomarker capable of predicting the response to immune checkpoint blockade
Circulating tumour DNA (ctDNA) as a liquid biopsy for melanoma
Circulating tumour DNA (ctDNA) has emerged as a promising blood-based biomarker for monitoring disease status of patients with advanced cancers. In melanoma, ctDNA has been shown to have clinical value as an alternative tumour source for the detection clinically targetable mutations for the assessment of response to therapy. This review provides a critical summary of the evidence that gives credence to the utility of ctDNA as a biomarker for monitoring of disease status in advanced melanoma and the steps required for its implementation into clinical settings
Two-point correlation properties of stochastic "cloud processes''
We study how the two-point density correlation properties of a point particle
distribution are modified when each particle is divided, by a stochastic
process, into an equal number of identical "daughter" particles. We consider
generically that there may be non-trivial correlations in the displacement
fields describing the positions of the different daughters of the same "mother"
particle, and then treat separately the cases in which there are, or are not,
correlations also between the displacements of daughters belonging to different
mothers. For both cases exact formulae are derived relating the structure
factor (power spectrum) of the daughter distribution to that of the mother.
These results can be considered as a generalization of the analogous equations
obtained in ref. [1] (cond-mat/0409594) for the case of stochastic displacement
fields applied to particle distributions. An application of the present results
is that they give explicit algorithms for generating, starting from regular
lattice arrays, stochastic particle distributions with an arbitrarily high
degree of large-scale uniformity.Comment: 14 pages, 3 figure
Thermoelectric effects in a strongly correlated model for NaCoO
Thermal response functions of strongly correlated electron systems are of
appreciable interest to the larger scientific community both theoretically and
technologically. Here we focus on the infinitely correlated t-J model on a
geometrically frustrated two-dimensional triangular lattice.
Using exact diagonalization on a finite sized system we calculate the
dynamical thermal response functions in order to determine the thermopower,
Lorenz number, and dimensionless figure of merit. The dynamical thermal
response functions is compared to the infinite frequency limit and shown to be
very weak functions of frequency, hence, establishing the validity of the high
frequency formalism recently proposed by Shastry for the thermopower, Lorenz
number, and the dimensionless figure of merit. Further, the thermopower is
demonstrated to have a low to mid temperature enhancement when the sign of the
hopping parameter is switched from positive to negative for the
geometrically frustrated lattice considered.Comment: 16 pages, 10 figures, color version available at
http://physics.ucsc.edu/~peterson/mrpeterson-condmat-NCO.pdf. V.2 has fixed
minor typos in Eq. 11, 19, 25, and 26. V.3 is a color versio
- …