574 research outputs found

    A slowly rotating perfect fluid body in an ambient vacuum

    Full text link
    A global model of a slowly rotating perfect fluid ball in general relativity is presented. To second order in the rotation parameter, the junction surface is an ellipsoidal cylinder. The interior is given by a limiting case of the Wahlquist solution, and the vacuum region is not asymptotically flat. The impossibility of joining an asymptotically flat vacuum region has been shown in a preceding work.Comment: 7 pages, published versio

    The Wahlquist metric cannot describe an isolated rotating body

    Full text link
    It is proven that the Wahlquist perfect fluid space-time cannot be smoothly joined to an exterior asymptotically flat vacuum region. The proof uses a power series expansion in the angular velocity, to a precision of the second order. In this approximation, the Wahlquist metric is a special case of the rotating Whittaker space-time. The exterior vacuum domain is treated in a like manner. We compute the conditions of matching at the possible boundary surface in both the interior and the vacuum domain. The conditions for matching the induced metrics and the extrinsic curvatures are mutually contradictory.Comment: 13 pages, 0 figure

    How important is geography for agglomeration?

    Full text link

    The open XXZ-chain: Bosonisation, Bethe ansatz and logarithmic corrections

    Full text link
    We calculate the bulk and boundary parts of the free energy for an open spin-1/2 XXZ-chain in the critical regime by bosonisation. We identify the cutoff independent contributions and determine their amplitudes by comparing with Bethe ansatz calculations at zero temperature T. For the bulk part of the free energy we find agreement with Lukyanov's result [Nucl.Phys.B 522, 533 (1998)]. In the boundary part we obtain a cutoff independent term which is linear in T and determines the temperature dependence of the boundary susceptibility in the attractive regime for T≪1T\ll 1. We further show that at particular anisotropies where contributions from irrelevant operators with different scaling dimensions cross, logarithmic corrections appear. We give explicit formulas for these terms at those anisotropies where they are most important. We verify our results by comparing with extensive numerical calculations based on a numerical solution of the T=0 Bethe ansatz equations, the finite temperature Bethe ansatz equations in the quantum-transfer matrix formalism, and the density-matrix renormalisation group applied to transfer matrices.Comment: 35 pages, 8 figure

    Human Monocytes Undergo Excessive Apoptosis following Temozolomide Activating the ATM/ATR Pathway While Dendritic Cells and Macrophages Are Resistant

    Get PDF
    Immunodeficiency is a severe therapy-limiting side effect of anticancer chemotherapy resulting from sensitivity of immunocompetent cells to DNA damaging agents. A central role in the immune system is played by monocytes that differentiate into macrophages and dendritic cells (DCs). In this study we compared human monocytes isolated from peripheral blood and cytokine matured macrophages and DCs derived from them and assessed the mechanism of toxicity of the DNA methylating anticancer drug temozolomide (TMZ) in these cell populations. We observed that monocytes, but not DCs and macrophages, were highly sensitive to the killing effect of TMZ. Studies on DNA damage and repair revealed that the initial DNA incision was efficient in monocytes while the re-ligation step of base excision repair (BER) can not be accomplished, resulting in an accumulation of DNA single-strand breaks (SSBs). Furthermore, monocytes accumulated DNA double-strand breaks (DSBs) following TMZ treatment, while DCs and macrophages were able to repair DSBs. Monocytes lack the DNA repair proteins XRCC1, ligase IIIα and PARP-1 whose expression is restored during differentiation into macrophages and DCs following treatment with GM-CSF and GM-CSF plus IL-4, respectively. These proteins play a key role both in BER and DSB repair by B-NHEJ, which explains the accumulation of DNA breaks in monocytes following TMZ treatment. Although TMZ provoked an upregulation of XRCC1 and ligase IIIα, BER was not enhanced likely because PARP-1 was not upregulated. Accordingly, inhibition of PARP-1 did not sensitize monocytes, but monocyte-derived DCs in which strong PARP activation was observed. TMZ induced in monocytes the DNA damage response pathways ATM-Chk2 and ATR-Chk1 resulting in p53 activation. Finally, upon activation of the Fas-receptor and the mitochondrial pathway apoptosis was executed in a caspase-dependent manner. The downregulation of DNA repair in monocytes, resulting in their selective killing by TMZ, might impact on the immune response during cancer chemotherapy

    A Natural Orbital Diagnostic for Multiconfigurational Character in Correlated Wave Functions

    Get PDF
    The natural orbitals and their corresponding occupation numbers are constructed for several interesting problems to demonstrate that the existence of negative natural orbital occupation numbers for single reference correlation methods provides a simple diagnostic for the need for a multiconfigurational description of the wave function

    An Open-System Quantum Simulator with Trapped Ions

    Full text link
    The control of quantum systems is of fundamental scientific interest and promises powerful applications and technologies. Impressive progress has been achieved in isolating the systems from the environment and coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled coupling to an environment remains largely unexplored. Here we report the first realization of a toolbox for simulating an open quantum system with up to five qubits. Using a quantum computing architecture with trapped ions, we combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We illustrate this engineering by the dissipative preparation of entangled states, the simulation of coherent many-body spin interactions and the quantum non-demolition measurement of multi-qubit observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system quantum simulation and computation.Comment: Pre-review submission to Nature. For an updated and final version see publication. Manuscript + Supplementary Informatio

    Reduced right ventricular function on cardiovascular magnetic resonance imaging is associated with uteroplacental impairment in tetralogy of Fallot

    Get PDF
    Background: Maternal right ventricular (RV) dysfunction (measured by echocardiography) is associated with impaired uteroplacental circulation, however echocardiography has important limitations in the assessment of RV function. We therefore aimed to investigate the association of pre-pregnancy RV and left ventricular (LV) function measured by cardiovascular magnetic resonance with uteroplacental Doppler flow parameters in pregnant women with repaired Tetralogy of Fallot (ToF). Methods: Women with repaired ToF were examined, who had been enrolled in a prospective multicenter study of pregnant women with congenital heart disease. Clinical data and CMR evaluation before pregnancy were compared with uteroplacental Doppler parameters at 20 and 32 weeks gestation. In particular, pulsatility index (PI) of uterine and umbilical artery were studied. Results: We studied 31 women; mean age 30 years, operated at early age. Univariable analyses showed that reduced RV ejection fraction (RVEF; P = 0.037 and P = 0.001), higher RV end-systolic volume (P = 0.004) and higher LV end-diastolic and end-systolic volume (P = 0.001 and P = 0.003, respectively) were associated with higher uterine or umbilical artery PI. With multivariable analyses (corrected for maternal age and body mass index), reduced RVEF before pregnancy remained associated with higher umbilical artery PI at 32 weeks (P = 0.002). RVEF was lower in women with high PI compared to women with normal PI during pregnancy (44% vs. 53%, p = 0.022). LV ejection fraction was not associated with uterine or umbilical artery PI. Conclusions: Reduced RV function before pregnancy is associated with abnormal uteroplacental Doppler flow parameters. It could be postulated that reduced RV function on pre-pregnancy CMR (≤2 years) is a predisposing factor for impaired placental function in women with repaired ToF.</p
    • …
    corecore