37 research outputs found

    Impact of RNA Editing on Functions of the Serotonin 2C Receptor in vivo

    Get PDF
    Transcripts encoding 5-HT2C receptors are modified posttranscriptionally by RNA editing, generating up to 24 protein isoforms. In recombinant cells, the fully edited isoform, 5-HT2C-VGV, exhibits blunted G-protein coupling and reduced constitutive activity. The present studies examine the signal transduction properties of 5-HT2C-VGV receptors in brain to determine the in vivo consequences of altered editing. Using mice solely expressing the 5-HT2C-VGV receptor (VGV/Y), we demonstrate reduced G-protein coupling efficiency and high-affinity agonist binding of brain 5-HT2C-VGV receptors. However, enhanced behavioral sensitivity to a 5-HT2C receptor agonist was also seen in mice expressing 5-HT2C-VGV receptors, an unexpected finding given the blunted G-protein coupling. In addition, mice expressing 5-HT2C-VGV receptors had greater sensitivity to a 5-HT2C inverse agonist/antagonist enhancement of dopamine turnover relative to wild-type mice. These behavioral and biochemical results are most likely explained by increases in 5-HT2C receptor binding sites in the brains of mice solely expressing 5-HT2C-VGV receptors. We conclude that 5-HT2C-VGV receptor signaling in brain is blunted, but this deficiency is masked by a marked increase in 5-HT2C receptor binding site density in mice solely expressing the VGV isoform. These findings suggest that RNA editing may regulate the density of 5-HT2C receptor binding sites in brain. We further caution that the pattern of 5-HT2C receptor RNA isoforms may not reflect the pattern of protein isoforms, and hence the inferred overall function of the receptor

    Mice with altered serotonin 2C receptor RNA editing display characteristics of Prader–Willi syndrome

    Get PDF
    RNA transcripts encoding the 2C-subtype of serotonin (5HT2C) receptor undergo up to five adenosine-to-inosine editing events to encode twenty-four protein isoforms. To examine the effects of altered 5HT2C editing in vivo, we generated mutant mice solely expressing the fully-edited (VGV) isoform of the receptor. Mutant animals present phenotypic characteristics of Prader-Willi Syndrome (PWS) including a failure to thrive, decreased somatic growth, neonatal muscular hypotonia, and reduced food consumption followed by post-weaning hyperphagia. Though previous studies have identified alterations in both 5HT2C receptor expression and 5HT2C-mediated behaviors in both PWS patients and mouse models of this disorder, to our knowledge the 5HT2C gene is the first locus outside the PWS imprinted region in which mutations can phenocopy numerous aspects of this syndrome. These results not only strengthen the link between the molecular etiology of PWS and altered 5HT2C expression, but also demonstrate the importance of normal patterns of 5HT2C RNA editing in vivo

    Renal replacement therapy in acute kidney injury: controversy and consensus

    Get PDF
    Renal replacement therapies (RRTs) represent a cornerstone in the management of severe acute kidney injury. This area of intensive care and nephrology has undergone significant improvement and evolution in recent years. Continuous RRTs have been a major focus of new technological and treatment strategies. RRT is being used increasingly in the intensive care unit, not only for renal indications but also for other organ-supportive strategies. Several aspects related to RRT are now well established, but others remain controversial. In this review, we review the available RRT modalities, covering technical and clinical aspects. We discuss several controversial issues, provide some practical recommendations, and where possible suggest a research agenda for the future

    Modeling with Regression Analysis and Artificial Neural Networks the Resistance and Trim of Series 50 Experiments with V-Bottom Motor Boats

    Full text link
    Mathematical representations for the resistance, trim, and wetted length of the Experimental Model Basin Series 50 have been developed using conventional regression analysis techniques as well as artificial neural networks. Series 50 is a standard series of 20 V-bottomed motor boats tested in 1941. These hulls could be representative of today's semidisplacement hulls. Recently, the series has been reanalyzed and published using contemporary planing coefficients, enabling resistance prediction in design stages. In the present study, mathematical representations are developed for the Series 50 as an alternative to using charts or data tables. Two methods are used, regression analysis and artificial neural networks. This study provides a useful resistance prediction method for designers and an opportunity to compare and contrast regression analysis and artificial neural networks applied to standard series. The main finding of the study is that both techniques were capable of developing stable and accurate models. A detailed quantification of the differences between methods is provided

    Comparative analysis of A-to-I editing in human and non-human primate brains reveals conserved patterns and context-dependent regulation of RNA editing

    Full text link
    Abstract A-to-I RNA editing is an important process for generating molecular diversity in the brain through modification of transcripts encoding several proteins important for neuronal signaling. We investigated the relationships between the extent of editing at multiple substrate transcripts (5HT2C, MGLUR4, CADPS, GLUR2, GLUR4, and GABRA3) in brain tissue obtained from adult humans and rhesus macaques. Several patterns emerged from these studies revealing conservation of editing across primate species. Additionally, variability in the human population allows us to make novel inferences about the co-regulation of editing at different editing sites and even across different brain regions

    High-throughput multiplexed transcript analysis yields enhanced resolution of 5-hydroxytryptamine 2C receptor mRNA editing profiles

    Full text link
    RNA editing is a post-transcriptional modification in which adenosine residues are converted to inosine (adenosine-to-inosine editing). Commonly used methodologies to quantify RNA editing levels involve either direct sequencing or pyrosequencing of individual cDNA clones. The limitations of these methods lead to a small number of clones characterized in comparison to the number of mRNA molecules in the original sample, thereby producing significant sampling errors and potentially erroneous conclusions. We have developed an improved method for quantifying RNA editing patterns that increases sequence analysis to an average of more than 800,000 individual cDNAs per sample, substantially increasing accuracy and sensitivity. Our method is based on the serotonin 2C receptor (5-hydroxytryptamine(2C); 5HT(2C)) transcript, an RNA editing substrate in which up to five adenosines are modified. Using a high-throughput multiplexed transcript analysis, we were able to quantify accurately the expression of twenty 5HT(2C) isoforms, each representing at least 0.25% of the total 5HT(2C) transcripts. Furthermore, this approach allowed the detection of previously unobserved changes in 5HT(2C) editing in RNA samples isolated from different inbred mouse strains and dissected brain regions, as well as editing differences in alternatively spliced 5HT(2C) variants. This approach provides a novel and efficient strategy for large-scale analyses of RNA editing and may prove to be a valuable tool for uncovering new information regarding editing patterns in specific disease states and in response to pharmacological and physiological perturbation, further elucidating the impact of 5HT(2C) RNA editing on central nervous system function
    corecore