35 research outputs found

    GagPol-specific CD4+ T-cells increase the antibody response to Env by intrastructural help

    Get PDF
    Background: Immunization of rhesus macaques against Gag of SIV resulted in a more rapid appearance of Env antibodies after infection with SIV or SHIV challenge viruses although the vaccines lacked an Env component. We therefore explored whether T helper cells specific for internal HIV proteins could provide intrastructural help for Env-specific B cells and thus increase the Env antibody response. Results: Mice were immunized by adenoviral vector or DNA vaccines against GagPol and then boosted with virus-like particles (VLP) containing GagPol and Env. Env-specific antibody levels after the VLP booster immunizations were significantly higher in GagPol-immunized mice than in mock-vaccinated controls. Adoptive transfer of CD4+ T cells from GagPol-immunized mice also enhanced the Env antibody response to VLP immunization in the recipient mice. Depending on the presence of VLPs, co-cultivation of CD4+ T cells from GagPol-primed mice with BCR transgenic B cells specific for a protein presented on the surface of the VLPs also resulted in the activation of the B and T cells. Conclusions: Our study indicates that GagPol-specific T helper cells may provide intrastructural help for Env antibody responses. This cross-talk between immune responses directed against different components of the retroviral particle may be relevant for the immunopathogenesis of retroviral infections and allow to improve virus like particle vaccine approaches against HIV

    Innate signalling molecules as genetic adjuvants do not alter the efficacy of a DNA-based influenza A vaccine

    Get PDF
    In respect to the heterogeneity among influenza A virus strains and the shortcomings of current vaccination programs, there is a huge interest in the development of alternative vaccines that provide a broader and more long-lasting protection. Gene-based approaches are considered as promising candidates for such flu vaccines. In our study, innate signalling molecules from the RIG-I and the NALP3 pathways were evaluated as genetic adjuvants in intramuscular DNA immunizations. Plasmids encoding a constitutive active form of RIG-I (cRIG-I), IPS-1, IL-1β, or IL-18 were co-administered with plasmids encoding the hemagglutinin and nucleoprotein derived from H1N1/Puerto Rico/8/1934 via electroporation in BALB/c mice. Immunogenicity was analysed in detail and efficacy was demonstrated in homologous and heterologous influenza challenge experiments. Although the biological activities of the adjuvants have been confirmed by in vitro reporter assays, their single or combined inclusion in the vaccine did not result in superior vaccine efficacy. With the exception of significantly increased levels of antigen-specific IgG1 after the co-administration of IL-1β, there were only minor alterations concerning the immunogenicity. Since DNA electroporation alone induced substantial inflammation at the injection site, as demonstrated in this study using Mx2-Luc reporter mice, it might override the adjuvants´ contribution to the inflammatory microenvironment and thereby minimizes the influence on the immunogenicity. Taken together, the DNA immunization was protective against subsequent challenge infections but could not be further improved by the genetic adjuvants analysed in this study

    Taking Ownership: Our Pledge to Educate All of Detroit's Children

    Get PDF
    Excellent Schools Detroit represents a broad and diverse cross section of Detroit's education, government, civic and community, parent, organized labor, and philanthropic leaders who are committed to ensuring that all Detroit children receive the great education they deserve. This citywide education plan reflects months of discussions and deliberations by coalition members, as well as a series of six community meetings in November and December, youth focus groups, small group discussions with multiple stakeholders, and other outreach efforts. We appreciate the thoughtful recommendations from the many Detroiters who are as passionate as we are about the need to prepare all students for college, careers, and life in the 21st century

    Targeting Antibody Responses to the Membrane Proximal External Region of the Envelope Glycoprotein of Human Immunodeficiency Virus

    Get PDF
    Although human immunodeficiency type 1 (HIV-1) infection induces strong antibody responses to the viral envelope glycoprotein (Env) only a few of these antibodies possess the capacity to neutralize a broad range of strains. The induction of such antibodies represents an important goal in the development of a preventive vaccine against the infection. Among the broadly neutralizing monoclonal antibodies discovered so far, three (2F5, Z13 and 4E10) target the short and hidden membrane proximal external region (MPER) of the gp41 transmembrane protein. Antibody responses to MPER are rarely observed in HIV-infected individuals or after immunization with Env immunogens. To initiate antibody responses to MPER in its membrane-embedded native conformation, we generated expression plasmids encoding the membrane-anchored ectodomain of gp41 with N-terminal deletions of various sizes. Following transfection of these plasmids, the MPER domains are displayed on the cell surface and incorporated into HIV virus like particles (VLP). Transfected cells displaying MPER mutants bound as efficiently to both 2F5 and 4E10 as cells transfected with a plasmid encoding full-length Env. Mice immunized with VLPs containing the MPER mutants produced MPER-specific antibodies, the levels of which could be increased by the trimerization of the displayed proteins as well as by a DNA prime-VLP boost immunization strategy. Although 2F5 competed for binding to MPER with antibodies in sera of some of the immunized mice, neutralizing activity could not be detected. Whether this is due to inefficient binding of the induced antibodies to MPER in the context of wild type Env or whether the overall MPER-specific antibody response induced by the MPER display mutants is too low to reveal neutralizing activity, remains to be determined

    Successful treatment of COVID-19 infection with convalescent plasma in B-cell-depleted patients may promote cellular immunity

    Full text link
    Treatment with convalescent plasma has been shown to be safe in coronavirus disease in 2019 (COVID-19) infection, although efficacy reported in immunocompetent patients varies. Nevertheless, neutralizing antibodies are a key requisite in the fight against viral infections. Patients depleted of antibody-producing B cells, such as those treated with rituximab (anti-CD20) for hematological malignancies, lack a fundamental part of their adaptive immunity. Treatment with convalescent plasma appears to be of general benefit in this particularly vulnerable cohort. We analyzed clinical course and inflammation markers of three B-cell-depleted patients suffering from COVID-19 who were treated with convalescent plasma. In addition, we measured serum antibody levels as well as peripheral blood CD38/HLA-DR-positive T-cells ex vivo and CD137-positive T-cells after in vitro stimulation with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived peptides in these patients. We observed that therapy with convalescent plasma was effective in all three patients and analysis of CD137-positive T-cells after stimulation with SARS-CoV-2 peptides showed an increase in peptide-specific T-cells after application of convalescent plasma. In conclusion, we here demonstrate efficacy of convalescent plasma therapy in three B-cell-depleted patients and present data that suggest that while application of convalescent plasma elevates systemic antibody levels only transiently, it may also boost specific T-cell responses

    Estimates and determinants of SARS-CoV-2 seroprevalence and infection fatality ratio using latent class analysis: the population-based Tirschenreuth study in the hardest-hit German county in spring 2020

    Get PDF
    SARS-CoV-2 infection fatality ratios (IFR) remain controversially discussed with implications for political measures. The German county of Tirschenreuth suffered a severe SARS-CoV-2 outbreak in spring 2020, with particularly high case fatality ratio (CFR). To estimate seroprevalence, underreported infections, and IFR for the Tirschenreuth population aged ≥14 years in June/July 2020, we conducted a population-based study including home visits for the elderly, and analyzed 4203 participants for SARS-CoV-2 antibodies via three antibody tests. Latent class analysis yielded 8.6% standardized county-wide seroprevalence, a factor of underreported infections of 5.0, and 2.5% overall IFR. Seroprevalence was two-fold higher among medical workers and one third among current smokers with similar proportions of registered infections. While seroprevalence did not show an age-trend, the factor of underreported infections was 12.2 in the young versus 1.7 for ≥85-year-old. Age-specific IFRs were <0.5% below 60 years of age, 1.0% for age 60–69, and 13.2% for age 70+. Senior care homes accounted for 45% of COVID-19-related deaths, reflected by an IFR of 7.5% among individuals aged 70+ and an overall IFR of 1.4% when excluding senior care home residents from our computation. Our data underscore senior care home infections as key determinant of IFR additionally to age, insufficient targeted testing in the young, and the need for further investigations on behavioral or molecular causes of the fewer infections among current smokers
    corecore