23 research outputs found

    Dynamic Reconstruction with Statistical Ray Weighting for C-Arm CT Perfusion Imaging

    Get PDF
    Abstract—Tissue perfusion measurement using C-arm angiography systems is a novel technique with potential high benefit for catheter-guided treatment of stroke in the interventional suite. However, perfusion C-arm CT (PCCT) is challenging: the slow C-arm rotation speed only allows measuring samples of contrast time attenuation curves (TACs) every 5 – 6 s if reconstruction algorithms for static data are used. Furthermore, the peaks of the tissue TACs typically lie in a range of 5 – 30 HU, thus perfusion imaging is very sensitive to noise. Recently we presented a dynamic, iterative reconstruction (DIR) approach to reconstruct TACs described by a weighted sum of linear spline functions with a regularization based on joint bilateral filtering (JBF). In this work we incorporate statistical ray weighting into the algorithm and show how this helps to improve the reconstructed cerebral blood flow (CBF) maps in a simulation study with a realistic dynamic brain phantom. The Pearson correlation of the CBF maps to ground truth maps increases from 0.85 (FDK), 0.87 (FDK with JBF), and 0.90 (DIR with JBF) to 0.92 (DIR with JBF and ray weighting). The results suggest that the statistical ray weighting approach improves the diagnostic accuracy of PCCT based on DIR. I

    Bigger, Better, Faster, More at the LHC

    Get PDF
    Multijet plus missing energy searches provide universal coverage for theories that have new colored particles that decay into a dark matter candidate and jets. These signals appear at the LHC further out on the missing energy tail than two-to-two scattering indicates. The simplicity of the searches at the LHC contrasts sharply with the Tevatron where more elaborate searches are necessary to separate signal from background. The searches presented in this article effectively distinguish signal from background for any theory where the LSP is a daughter or granddaughter of the pair-produced colored parent particle without ever having to consider missing energies less than 400 GeV.Comment: 26 pages, 8 Figures. Minor textual changes, typos fixed and references adde

    Where does the transport current flow in Bi2Sr2CaCu2O8 crystals?

    Full text link
    A new measurement technique for investigation of vortex dynamics is introduced. The distribution of the transport current across a crystal is derived by a sensitive measurement of the self-induced magnetic field of the transport current. We are able to clearly mark where the flow of the transport current is characterized by bulk pinning, surface barrier, or a uniform current distribution. One of the novel results is that in BSCCO crystals most of the vortex liquid phase is affected by surface barriers resulting in a thermally activated apparent resistivity. As a result the standard transport measurements in BSCCO do not probe the dynamics of vortices in the bulk, but rather measure surface barrier properties.Comment: 11 pages, 4 figures, accepted for publication in Natur

    Absence of an association of human polyomavirus and papillomavirus infection with lung cancer in China: a nested case–control study

    Get PDF
    BACKGROUND: Studies of human polyomavirus (HPyV) infection and lung cancer are limited and those regarding the association of human papillomavirus (HPV) infection and lung cancer have produced inconsistent results. METHODS: We conducted a nested case–control study to assess the association between incident lung cancer of various histologies and evidence of prior infection with HPyVs and HPVs. We selected serum from 183 cases and 217 frequency matched controls from the Yunnan Tin Miner’s Cohort study, which was designed to identify biomarkers for early detection of lung cancer. Using multiplex liquid bead microarray (LBMA) antibody assays, we tested for antibodies to the VP1 structural protein and small T antigen (ST-Ag) of Merkel cell, KI, and WU HPyVs. We also tested for antibodies against HPV L1 structural proteins (high-risk types 16, 18, 31, 33, 52, and 58 and low-risk types 6 and 11) and E6 and E7 oncoproteins (high risk types 16 and 18). Measures of antibody reactivity were log transformed and analyzed using logistic regression. RESULTS: We found no association between KIV, WUV, and MCV antibody levels and incident lung cancer (P-corrected for multiple comparisons >0.10 for all trend tests). We also found no association with HPV-16, 18, 31, 33, 52, and 58 seropositivity (P-corrected for multiple comparisons >0.05 for all). CONCLUSIONS: Future studies of infectious etiologies of lung cancer should look beyond HPyVs and HPVs as candidate infectious agents. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-016-2381-3) contains supplementary material, which is available to authorized users

    Experimental Investigation and Large-Eddy Simulation of the Turbulent Flow past a Smooth and Rigid Hemisphere

    Get PDF
    Computations carried out on the German Federal Top-Level Computer SuperMUC at LRZ Munich under the contract number pr84na.International audienceThe objective of the present paper is to provide a detailed experimental and numerical investigation on the turbulent flow past a hemispherical obstacle (diameter D). For this purpose, the bluff body is exposed to a thick turbulent boundary layer of the thickness δ = D/2 at Re = 50,000. In the experiment this boundary layer thickness is achieved by specific fences placed in the upstream region of the wind tunnel. A detailed measurement of the upstream flow conditions by laser-Doppler and hot-film probes allows to mimic the inflow conditions for the complementary large-eddy simulation of the flow field using a synthetic turbulence inflow generator. These clearly defined boundary and operating conditions are the prerequisites for a combined experimental and numerical investigation of the flow field relying on the laser-Doppler anemometry and a finite-volume Navier-Stokes solver for block-structured curvilinear grids. The results comprise an analysis on the unsteady flow features observed in the vicinity of the hemisphere as well as a detailed discussion of the time-averaged flow field. The latter includes the mean velocity field as well as the Reynolds stresses. Owing to the proper description of the oncoming flow and supplementary numerical studies guaranteeing the choice of an appropriate grid and subgrid-scale model, the results of the measurements and the prediction are found to be in close agreement

    Iterative denoising algorithms for perfusion C-arm CT with a rapid scanning protocol

    No full text
    Tissue perfusion measurement using C-arm angiography sys-tems capable of CT-like imaging (C-arm CT) is a novel tech-nique with potentially high benefit for catheter-guided treat-ment of stroke in the interventional suite. New rapid scan-ning protocols with increased C-arm rotation speed enable fast acquisitions of C-arm CT volumes and allow for sampling the contrast flow with improved temporal resolution. How-ever, the peak contrast attenuation values of brain tissue lie typically in a range of 5–30 HU. Thus perfusion imaging is very sensitive to noise. In this work we compare different denoising algorithms based on the algebraic reconstruction technique (ART) and introduce a novel denoising technique, which requires only iterative filtering in volume space and is computationally much more attractive. Our evaluation using a realistic digital brain phantom shows that all methods im-prove the perfusion maps perceptibly compared to Feldkamp-type (FDK) reconstruction. The volume-based technique per-forms similarly to the ART-based methods: the Pearson cor-relation of reference and reconstructed blood flow maps in-creases from 0.61 for the FDK method to 0.81 for the best ART method and to 0.79 for the volume-based method. Fur-thermore results from a canine stroke model study are shown. Index Terms — Perfusion imaging, iterative reconstruc-tion, C-arm CT, stroke treatmen

    A Realistic Digital Phantom for Perfusion C-arm CT based on MRI Data

    No full text
    â—Ź CT Perfusion (CTP) is an important imaging modality for the diagnosis of ischemic stroke. â—Ź Flat Detector CT Perfusion (FD-CTP) enables C-Ar
    corecore