314 research outputs found

    The Long, the Short, and the Micro: A PolyA Tale of Pax3 in Satellite Cells

    Get PDF
    The use of alternative polyadenylation sites is emerging as an important regulator of gene expression. In this issue of Cell Stem Cell, Boutet et al. (2012) report that alternative 3′UTRs of the Pax3 transcript restrict its expression to axial satellite cells through miR-mediated targeting of one of the isoforms

    Molecular Mechanisms of Muscle Atrophy

    Get PDF
    AbstractSkeletal muscle atrophy has extreme adverse consequences. Molecular mechanisms that mediate the process of atrophy are not well defined. Recent studies have focused on diverse molecular cascades that control the activation of ubiquitin ligases, indicating that the involvement of the ubiquitin proteasome may be common to a range of atrophic stimuli

    Rituximab for Treatment of Membranoproliferative Glomerulonephritis and C3 Glomerulopathies

    Get PDF
    Membranoproliferative glomerulonephritis (MPGN) is a histological pattern of injury resulting from predominantly subendothelial and mesangial deposition of immunoglobulins or complement factors with subsequent inflammation and proliferation particularly of the glomerular basement membrane. Recent classification of MPGN is based on pathogenesis dividing MPGN into immunoglobulin-associated MPGN and complement-mediated C3 glomerulonephritis (C3GN) and dense deposit disease (DDD). Current guidelines suggest treatment with steroids, cytotoxic agents with or without plasmapheresis only for subjects with progressive disease, that is, nephrotic range proteinuria and decline of renal function. Rituximab, a chimeric B-cell depleting anti-CD20 antibody, has emerged in the last decade as a treatment option for patients with primary glomerular diseases such as minimal change disease, focal-segmental glomerulosclerosis, or idiopathic membranous nephropathy. However, data on the use of rituximab in MPGN, C3GN, and DDD are limited to case reports and retrospective case series. Patients with immunoglobulin-associated and idiopathic MPGN who were treated with rituximab showed partial and complete responses in the majorities of cases. However, rituximab was not effective in few cases of C3GN and DDD. Despite promising results in immunoglobulin-associated and idiopathic MPGN, current evidence on this treatment remains weak, and controlled and prospective data are urgently needed

    Activation of Fgf4 Gene Expression in the Myotomes Is Regulated by Myogenic bHLH Factors and by Sonic Hedgehog

    Get PDF
    AbstractThe Fgf4 gene encodes an important signaling molecule which is expressed in specific developmental stages, including the inner cell mass of the blastocyst, the myotomes, and the limb bud apical ectodermal ridge (AER). Using a transgenic approach, we previously identified overlapping but distinct enhancer elements in the Fgf4 3′ untranslated region necessary and sufficient for myotome and AER expression. Here we have investigated the hypothesis that Fgf4 is a target of myogenic bHLH factors. We show by mutational analysis that a conserved E box located in the Fgf4 myotome enhancer is required for Fgf4-lacZ expression in the myotomes. A DNA probe containing the E box binds MYF5, MYOD, and bHLH-like activities from nuclear extracts of differentiating C2-7 myoblast cells, and both MYF5 and MYOD can activate gene expression of reporter plasmids containing the E-box element. Analyses of Myf5 and MyoD knockout mice harboring Fgf4-lacZ transgenes show that Myf5 is required for Fgf4 expression in the myotomes, while MyoD is not, but MyoD can sustain Fgf4 expression in the ventral myotomes in the absence of Myf5. Sonic hedgehog (Shh) signaling has been shown to have an essential inductive function in the expression of Myf5 and MyoD in the epaxial myotomes, but not in the hypaxial myotomes. We show here that expression of an Fgf4-lacZ transgene in Shh−/− embryos is suppressed not only in the epaxial but also in the hypaxial myotomes, while it is maintained in the AER. This suggests that Shh mediates Fgf4 activation in the myotomes through mechanisms independent of its role in the activation of myogenic factors. Thus, a cascade of events, involving Shh and bHLH factors, is responsible for activating Fgf4 expression in the myotomes in a spatial- and temporal-specific manner

    Satellite cell contribution to disease pathology in Duchenne muscular dystrophy

    Get PDF
    Progressive muscle weakness and degeneration characterize Duchenne muscular dystrophy (DMD), a lethal, x-linked neuromuscular disorder that affects 1 in 5,000 boys. Loss of dystrophin protein leads to recurrent muscle degeneration, progressive fibrosis, chronic inflammation, and dysfunction of skeletal muscle resident stem cells, called satellite cells. Unfortunately, there is currently no cure for DMD. In this mini review, we discuss how satellite cells in dystrophic muscle are functionally impaired, and how this contributes to the DMD pathology, and the tremendous potential of restoring endogenous satellite cell function as a viable treatment strategy to treat this debilitating and fatal disease

    Canonical Wnt Signaling Induces BMP-4 to Specify Slow Myofibrogenesis of Fetal Myoblasts

    Get PDF
    Background The Wnts are secreted proteins that play important roles in skeletal myogenesis, muscle fiber type diversification, neuromuscular junction formation and muscle stem cell function. How Wnt proteins orchestrate such diverse activities remains poorly understood. Canonical Wnt signaling stabilizes β-catenin, which subsequently translocate to the nucleus to activate the transcription of TCF/LEF family genes. Methods We employed TCF-reporter mice and performed analysis of embryos and of muscle groups. We further isolated fetal myoblasts and performed cell and molecular analyses. Results We found that canonical Wnt signaling is strongly activated during fetal myogenesis and weakly activated in adult muscles limited to the slow myofibers. Muscle-specific transgenic expression of a stabilized β-catenin protein led to increased oxidative myofibers and reduced muscle mass, suggesting that canonical Wnt signaling promotes slow fiber types and inhibits myogenesis. By TCF-luciferase reporter assay, we identified Wnt-1 and Wnt-3a as potent activators of canonical Wnt signaling in myogenic progenitors. Consistent with in vivo data, constitutive overexpression of Wnt-1 or Wnt-3a inhibited the proliferation of both C2C12 and primary myoblasts. Surprisingly, Wnt-1 and Wnt-3a overexpression up-regulated BMP-4, and inhibition of BMP-4 by shRNA or recombinant Noggin protein rescued the myogenic inhibitory effect of Wnt-1 and Wnt-3a. Importantly, Wnt-3a or BMP-4 recombinant proteins promoted slow myosin heavy chain expression during myogenic differentiation of fetal myoblasts. Conclusions These results demonstrate a novel interaction between canonical Wnt and BMP signaling that induces myogenic differentiation towards slow muscle phenotype

    MyoD−/− Satellite Cells in Single-Fiber Culture Are Differentiation Defective and MRF4 Deficient

    Get PDF
    AbstractMyoD-deficient mice are without obvious deleterious muscle phenotype during embryogenesis and fetal development, and adults in the laboratory have grossly normal skeletal muscle and life span. However, a previous study showed that in the context of muscle degeneration on a mdx (dystrophin null) genetic background, animals lacking MyoD have a greatly intensified disease phenotype leading to lethality not otherwise seen in mdx mice. Here we have examined MyoD−/− adult muscle fibers and their associated satellite cells in single myofiber cultures and describe major phenotypic differences found at the tissue, cellular, and molecular levels. The steady-state number of satellite cells on freshly isolated MyoD−/− fibers was elevated and abnormal branched fiber morphologies were observed, the latter suggesting chronic muscle regeneration in vivo. Single-cell RNA coexpression analyses were performed for c-met, m-cadherin, and the four myogenic regulatory factors (MRFs.) Most mutant satellite cells entered the cell cycle and upregulated expression of myf5, both characteristic early steps in satellite cell maturation. However, they later failed to normally upregulate MRF4, displayed a major deficit in m-cadherin expression, and showed a significant diminution in myogenin-positive status compared with wildtype. MyoD−/− satellite cells formed unusual aggregate structures, failed to fuse efficiently, and showed greater than 90% reduction in differentiation efficiency relative to wildtype. A further survey of RNAs encoding regulators of growth and differentiation, cell cycle progression, and cell signaling revealed similar or identical expression profiles for most genes as well as several noteworthy differences. Among these, GDF8 and Msx1 were identified as potentially important regulators of the quiescent state whose expression profile differs between mutant and wildtype. Considered together, these data suggest that activated MyoD−/− satellite cells assume a phenotype that resembles in some ways a developmentally “stalled” cell compared to wildtype. However, the MyoD−/− cells are not merely developmentally immature, as they also display novel molecular and cellular characteristics that differ from any observed in wild-type muscle precursor counterparts of any stage
    • …
    corecore