8 research outputs found

    An experimental study of transition to turbulence in plane Poiseuille flow

    No full text
    Zsfassung in dt. SpracheDer laminar-turbulente Umschlag einer druckgetriebenen Strömung zwischen zwei parallelen Platten, auch ebene Poiseuille Strömung genannt, wird mit Hilfe einer Methode zur Strömungsvisualisierung untersucht. Dieser Übergangsprozess ist subkritisch, sodass währenddessen laminare und turbulente Bereiche in der Strömung gleichzeitige vorhanden sind. Der Fokus dieser Arbeit liegt auf der zeitlichen Entwicklung dieser räumlich beschränkten, turbulenten Bereiche in einem experimentellen Kanal großer Breite und Länge. Zu diesem Zweck werden ovale Wirbelflecken unter Zuhilfenahme von lokalen Störungen einzeln ausgelöst und deren zeitliche Entwicklung verfolgt, wobei auffällt dass diese Flecken eine Streifenform ausbilden. Deshalb wurde ein neuer Störmechanismus entworfen, mit dem die Entstehung solcher Streifen in der Strömung direkt angeregt werden können. Hierdurch konnte gezeigt werden, dass, erstens, diese Streifen die natürlich vorkommende Form lokal beschränkter Turbulenz darstellen und, zweitens, dass diese Streifen in einem deutlich niedrigeren Bereich von Reynolds-Zahlen bestehen können, als bisher geglaubt. Es konnte auch gezeigt werden, dass diese Streifen einen ausgezeichneten Winkel relativ zur Fließrichtung annehmen. Diese Winkel liegen in einem engen Bereich dessen Grenzen von der Reynolds-Zahl abhängen. Außerdem werden Zu- und Abnahme der Größe von existierenden Streifen, sowie die Keimbildung neuer Bänder detailliert beschrieben. Zum Schluss wurde der kritische Punkt für den Turbulenten Umschlag einer ebenen Poiseuilleströmung aus den durchschnittlichen Zuwachs- bzw. Abklingraten abgeleitet. Dieser Schwellwert, unterwelchem alle turbulenten Strukturen abklingen, liegt deutlich tiefer als alle bisherigen Schätzungen.The laminar-turbulent transition of a pressure driven flow between two parallel plates, called plane Poiseuille flow, is studied using a flow visualisation technique. The transition process in the subcritical regime is characterised by the co-existence of laminar and turbulent regions. The present work focuses on the evolution of localised turbulence in a channel with a large aspect ratio and length. For this purpose, individual spot-shaped structures are triggered via a localised perturbation. Their development is monitored in time, which shows that these turbulent spots grow into the shape of stripes. Consequently, a new perturbation technique is developed that directly excites localised stripes in the flow. It is shown that the stripes are the natural form of localised turbulence and that they can exists at Reynolds numbers much lower than previously believed. It is also shown that these stripes are inclined to the mean flow direction in a narrow range of angles which depends on the Reynolds number. Furthermore, the growth and decay of existing turbulent stripes and the nucleation of new stripes is described in detail. Finally, the average growth and decay rates of these stripes are used to deduce the critical point in plane Poiseuille flow, below which turbulence cannot be sustained. This critical number is lower than existing estimates in the literature.5

    Velocity reconstruction in puffing pool fires with physics-informed neural networks

    No full text
    Pool fires are canonical representations of many accidental fires which can exhibit an unstable unsteady behavior, known as puffing, which involves a strong coupling between the temperature and velocity fields. Despite their practical relevance to fire research, their experimental study can be limited due to the complexity of measuring relevant quantities in parallel. In this work, we analyze the use of a recent physics-informed machine learning approach, called hidden fluid mechanics (HFM), to reconstruct unmeasured quantities in a puffing pool fire from measured quantities. The HFM framework relies on a physics-informed neural network (PINN) for this task. A PINN is a neural network that uses both the available data, here the measured quantities, and the physical equations governing the system, here the reacting Navier-Stokes equations, to infer the full fluid dynamic state. This framework is used to infer the velocity field in a puffing pool fire from measurements of density, pressure, and temperature. In this work, the dataset used for this test was generated from numerical simulations. It is shown that the PINN is able to reconstruct the velocity field accurately and to infer most features of the velocity field. In addition, it is shown that the reconstruction accuracy is robust with respect to noisy data, and a reduction in the number of measured quantities is explored and discussed. This study opens up the possibility of using PINNs for the reconstruction of unmeasured quantities from measured ones, providing the potential groundwork for their use in experiments for fire research.Aerodynamic

    Simulations and experiments on the ignition probability in turbulent premixed bluff-body flames

    No full text
    The ignition characteristics of a premixed bluff-body burner under lean conditions were investigated experimentally and numerically with a physical model focusing on ignition probability. Visualisation of the flame with a 5 kHz OH* chemiluminescence camera confirmed that successful ignitions were those associated with the movement of the kernel upstream, consistent with previous work in non-premixed systems. Performing many separate ignition trials at the same spark position and flow conditions resulted in a quantification of the ignition probability P_ign, which was found to decrease with increasing distance downstream of the bluff body and a decrease in equivalence ratio. Flows corresponding to flames close to the blow-off limit could not be ignited, although such flames were stable if reached from a richer already ignited condition. A detailed comparison with the local Karlovitz number and the mean velocity showed that regions of high P_ign are associated with low Ka and negative bulk velocity (i.e. towards the bluff body), although a direct correlation was not possible. A modelling effort that takes convection and localised flame quenching into account by tracking stochastic virtual flame particles, previously validated for non-premixed and spray ignition, was used to estimate the ignition probability. The applicability of this approach to premixed flows was first evaluated by investigating the model’s flame propagation mechanism in a uniform turbulence field, which showed that the model reproduces the bending behaviour of the S_T -versus-u' curve. Then ignition simulations of the bluff-body burner were carried out. The ignition probability map was computed and it was found that the model reproduces all main trends found in the experimental study.M.P. Sitte gratefully acknowledges financial support from the Gates Cambridge Trust. The experiments were carried out by E. Bach who was a Masters student from Karlsruhe Institute of Technology visiting the University of Cambridge in 2011.This is the final version of the article. It first appeared from Taylor & Francis via http://dx.doi.org/10.1080/13647830.2016.115575

    Does Planning Need the Plan?

    No full text

    A Catholic Approach to Organizing What Urban Designers Should Know

    No full text
    corecore