131 research outputs found
Small hive beetle, Aethina tumida , as a potential biological vector of honeybee viruses
The small hive beetle (SHB, Aethina tumida) is a parasite and scavenger of honeybee colonies. Here, we conducted laboratory experiments to investigate the potential of SHB as a vector of honeybee viruses. Using RT-PCR methods, Deformed Wing Virus (DWV) was detected in adult SHBs that: (1) were fed with dead workers with deformed wings, (2) were fed with DWV-positive brood, and (3) were associated with DWV-contaminated wax. SHB became significantly more often infected through feeding on virus infected workers, brood and the virus contaminated wax compared to pollen and the controls, where no infections were found. DWV was also detected in adult SHB after trophallaxis with infected workers. Further, among SHBs identified as DWV-positive, 40% of beetles carried negative stranded RNA of DWV, indicating virus replication. Our results suggest that SHB can be infected with honeybee viruses via food-borne transmission and have the potential of being a biological vector of honeybee viruse
Genome content and phylogenomics reveal both ancestral and lateral evolutionary pathways in plant-pathogenic Streptomyces species
© 2016, American Society for Microbiology. All Rights Reserved. Streptomyces spp. are highly differentiated actinomycetes with large, linear chromosomes that encode an arsenal of biologically active molecules and catabolic enzymes. Members of this genus are well equipped for life in nutrient-limited environments and are common soil saprophytes. Out of the hundreds of species in the genus Streptomyces, a small group has evolved the ability to infect plants. The recent availability of Streptomyces genome sequences, including four genomes of pathogenic species, provided an opportunity to characterize the gene content specific to these pathogens and to study phylogenetic relationships among them. Genome sequencing, comparative genomics, and phylogenetic analysis enabled us to discriminate pathogenic from saprophytic Streptomyces strains; moreover, we calculated that the pathogen-specific genome contains 4,662 orthologs. Phylogenetic reconstruction suggested that Streptomyces scabies and S. ipomoeae share an ancestor but that their biosynthetic clusters encoding the required virulence factor thaxtomin have diverged. In contrast, S. turgidiscabies and S. acidiscabies, two relatively unrelated pathogens, possess highly similar thaxtomin biosynthesis clusters, which suggests that the acquisition of these genes was through lateral gene transfer
Worldwide Diaspora of Aethina tumida (Coleoptera: Nitidulidae), a Nest Parasite of Honey Bees
Native to sub-Saharan Africa, Aethina tumida Murray (Coleoptera: Nitidulidae) is now an invasive pest of honey bee, Apis mellifera L., colonies in Australia and North America. Knowledge about the introduction(s) of this beetle from Africa into and among the current ranges will elucidate pest populations and invasion pathways and contribute to knowledge of how a parasite expands in new populations. We examined genetic variation in adult beetle samples from the United States, Australia, Canada, and Africa by sequencing a 912-base pair region of the mitochondrial DNA cytochrome c oxidase subunit I gene and screening 10 informative microsatellite loci. One Canadian introduction of small hive beetles can be traced to Australia, whereas the second introduction seems to have come from the United States. Beetles now resident in Australia were of a different African origin than were beetles in North America. North American beetles did not show covariance between two mitochondrial haplotypes and their microsatellite frequencies, suggesting that these beetles have a shared source despite having initial genetic structure within their introduced range. Excellent dispersal of beetles, aided in some cases by migratory beekeeping and the bee trade, seems to lead to panmixis in the introduced populations as well as in Afric
Entanglements of North Atlantic right whales increase as their distribution shifts in response to climate change: The need for a new management paradigm [poster]
Presented at 2019: World Marine Mammal Science Conference, Barcelona, Spain, December 9-12, 2019.Detection rate of severely injured or entangled NARWs began to increase around 2004 - 2007.We thank the North Atlantic Right Whale Consortium for data curation and dissemination, and the Atlantic Large Whale Disentanglement Network for entanglement sighting information
Assessment of Chronic Sublethal Effects of Imidacloprid on Honey Bee Colony Health
Funding for Open Access provided by the UMD Libraries Open Access Publishing Fund.Here we present results of a three-year study to determine the fate of imidacloprid residues in hive matrices and to assess chronic sublethal effects on whole honey bee colonies fed supplemental pollen diet containing imidacloprid at 5, 20 and 100 μg/kg over multiple brood cycles. Various endpoints of colony performance and foraging behavior were measured during and after exposure, including winter survival. Imidacloprid residues became diluted or non-detectable within colonies due to the processing of beebread and honey and the rapid metabolism of the chemical. Imidacloprid exposure doses up to 100 μg/kg had no significant effects on foraging activity or other colony performance indicators during and shortly after exposure. Diseases and pest species did not affect colony health but infestations of Varroa mites were significantly higher in exposed colonies. Honey stores indicated that exposed colonies may have avoided the contaminated food. Imidacloprid dose effects was delayed later in the summer, when colonies exposed to 20 and 100 μg/kg experienced higher rates of queen failure and broodless periods, which led to weaker colonies going into the winter. Pooled over two years, winter survival of colonies averaged 85.7, 72.4, 61.2 and 59.2% in the control, 5, 20 and 100 μg/kg treatment groups, respectively. Analysis of colony survival data showed a significant dose effect, and all contrast tests comparing survival between control and treatment groups were significant, except for colonies exposed to 5 μg/kg. Given the weight of evidence, chronic exposure to imidacloprid at the higher range of field doses (20 to 100 μg/kg) in pollen of certain treated crops could cause negative impacts on honey bee colony health and reduced overwintering success, but the most likely encountered high range of field doses relevant for seed-treated crops (5 μg/kg) had negligible effects on colony health and are unlikely a sole cause of colony declines
Ropeless fishing to prevent large whale entanglements: Ropeless Consortium report
The 2017 North Atlantic right whale (NARW) unusual mortality event and an increase in humpback whale entanglements off the U.S. West Coast have driven significant interest in ropeless trap/pot fishing. Removing the vertical buoy lines used to mark traps on the sea floor and haul them up would dramatically reduce or eliminate entanglements, the leading cause of NARW mortality, while potentially allowing fishermen to harvest in areas that would otherwise need to be closed to protect whales. At the first annual Ropeless Consortium meeting, researchers, fishing industry representatives, manufacturers, conservationists, and regulators discussed existing and developing technological replacements for the marking and retrieval functions of buoy lines. Fishermen and NGO partners shared their experience demonstrating ropeless systems and provided feedback to improve the designs. U.S. and Canadian federal regulators discussed prospects to use ropeless fishing gear in areas closed to fishing with vertical lines, as well as other options to reduce entanglements, and a Massachusetts official shared additional regulatory considerations involved in ropeless fishing in state waters. Sustainable seafood experts discussed consumer market advantages and endangered, threatened, and protected species impacts in sustainability standards and certifications. Moving forward, there is
an immediate need to (1) work with industry partners to iteratively test and improve ropeless retrieval and marking systems to adapt them to the specific conditions of the relevant trap/pot fisheries, (2) create data sharing and communications protocols for ropeless gear location marking, and (3) develop regulatory procedures and enforcement capacity to allow legal ropeless gear use.This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.2020-06-2
Estimating the effects of stressors on the health, survival and reproduction of a critically endangered, long-lived species
Funding: Office of Naval Research (Grant Number(s): N000142012697, N000142112096); Strategic Environmental Research and Development Program (Grant Number(s): RC20-1097, RC20-7188, RC21-3091).Quantifying the cumulative effects of stressors on individuals and populations can inform the development of effective management and conservation strategies. We developed a Bayesian state–space model to assess the effects of multiple stressors on individual survival and reproduction. In the model, stressor effects on vital rates are mediated by changes in underlying health, allowing for the comparison of effect sizes while accounting for intrinsic factors that might affect an individual's vulnerability and resilience. We applied the model to a 50-year dataset of sightings, calving events and stressor exposure of critically endangered North Atlantic right whales Eubalaena glacialis. The viability of this population is threatened by a complex set of stressors, including vessel strikes, entanglement in fishing gear and fluctuating prey availability. We estimated that blunt and deep vessel strike injuries and severe entanglement injuries had the largest effect on the health of exposed individuals, reinforcing the urgent need for mitigation measures. Prey abundance had a smaller but protracted effect on health across individuals, and estimated long-term trends in survival and reproduction followed the trend of the prey index, highlighting that long-term ecosystem-based management strategies are also required. Our approach can be applied to quantify the effects of multiple stressors on any long-lived species where suitable indicators of health and long-term monitoring data are available.Publisher PDFPeer reviewe
Decreasing body size is associated with reduced calving probability in critically endangered North Atlantic right whales
Funding: This work was supported by the Office of Naval Research (grant nos. N000142012697 and N000142112096) and the Strategic Environmental Research and Development Program (grant nos. RC20-1097, RC20-7188 and RC21-3091). Photogrammetry was supported by NOAA grant no. NA14OAR4320158 to Woods Hole Oceanographic Institution, and by NOAA's Southwest Fisheries Science Center.Body size is key to many life-history processes, including reproduction. Across species, climate change and other stressors have caused reductions in the body size to which animals can grow, called asymptotic size, with consequences for demography. A reduction in mean asymptotic length was documented for critically endangered North Atlantic right whales, in parallel with declines in health and vital rates resulting from human activities and environmental changes. Here, we tested whether smaller body size was associated with lower reproductive output, using a state-space model for individual health, survival and reproduction that quantifies the mechanistic links between these processes. Body size (as represented by the cube of length) was strongly associated with a female's calving probability at each reproductive opportunity. This relationship explained 62% of the variation in calving among reproductive females, along with their decreasing health (20%). The effects of decreasing mean body size on reproductive performance are another concerning indication of the worsening prospects for this species and many others affected by environmental change, requiring a focus of conservation and management interventions on improving conditions that affect reproduction as well as reducing mortality.Peer reviewe
Population comparison of right whale body condition reveals poor state of the North Atlantic right whale
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Christiansen, F., Dawson, S. M., Durban, J. W., Fearnbach, H., Miller, C. A., Bejder, L., Uhart, M., Sironi, M., Corkeron, P., Rayment, W., Leunissen, E., Haria, E., Ward, R., Warick, H. A., Kerr, I., Lynn, M. S., Pettis, H. M., & Moore, M. J. Population comparison of right whale body condition reveals poor state of the North Atlantic right whale. Marine Ecology Progress Series, 640, (2020): 1-16, doi:10.3354/meps13299.The North Atlantic right whale Eubalaena glacialis (NARW), currently numbering <410 individuals, is on a trajectory to extinction. Although direct mortality from ship strikes and fishing gear entanglements remain the major threats to the population, reproductive failure, resulting from poor body condition and sublethal chronic entanglement stress, is believed to play a crucial role in the population decline. Using photogrammetry from unmanned aerial vehicles, we conducted the largest population assessment of right whale body condition to date, to determine if the condition of NARWs was poorer than 3 seemingly healthy (i.e. growing) populations of southern right whales E. australis (SRWs) in Argentina, Australia and New Zealand. We found that NARW juveniles, adults and lactating females all had lower body condition scores compared to the SRW populations. While some of the difference could be the result of genetic isolation and adaptations to local environmental conditions, the magnitude suggests that NARWs are in poor condition, which could be suppressing their growth, survival, age of sexual maturation and calving rates. NARW calves were found to be in good condition. Their body length, however, was strongly determined by the body condition of their mothers, suggesting that the poor condition of lactating NARW females may cause a reduction in calf growth rates. This could potentially lead to a reduction in calf survival or an increase in female calving intervals. Hence, the poor body condition of individuals within the NARW population is of major concern for its future viability.North Atlantic: NOAA NA14OAR4320158; Australia: US Office of Naval Research Marine Mammals Program (Award
No. N00014-17-1-3018), the World Wildlife Fund for Nature Australia and a Murdoch University School of Veterinary and Life Sciences Small Grant Award; New Zealand: New Zealand Antarctic Research institute (NZARI 2016-1-4), Otago University and NZ Whale and Dolphin Trust; Argentina: National Geographic Society (Grant number: NGS-379R-18)
- …