210 research outputs found
Oral Examination
The oral cavity is the first component of the digestive tract, which is delimited by the lips anteriorly and the oropharynx posteriorly. The oral cavity functions as a protective barrier and is an essential component for speech and swallowing, mastication, digestion, and taste sensation.
The oral examination comprises a uniform and consistent inspection of the head and neck and an intraoral evaluation of the hard and soft tissues (see the images below) in conjunction with a thorough medical and dental history. The entire mouth should be inspected regardless of the patient’s chief complaint and reasons for the visit. [1, 2] Good patient’s history and careful examination are important to establish the correct diagnosis and provide appropriate treatment.
The physical examination begins with an extraoral examination to identify possible lesions (such as rash, erythema, and pigmentation), swelling or facial asymmetry. The head and neck should be palpated to identify any tenderness, masses and lymphadenopathy. All muscles of mastication and temporomandibular joint should be palpated for tenderness; patients should be asked to open and close the mouth multiple times to evaluate any limited opening, deviations or asymmetries. The cranial nerve examination should be performed to assess possible neurosensory and neuromuscular deficits.
A good light source is fundamental for a good intraoral examination. Any intraoral lesion should be described with respect to size, extent, thickness, color, texture, consistency, and tenderness
Simulation Study of Al Channeling in 4H-SiC
Peer reviewe
Electronic effects in high-energy radiation damage in iron
Electronic effects are believed to be important in high--energy radiation
damage processes where high electronic temperature is expected, yet their
effects are not currently understood. Here, we perform molecular dynamics
simulations of high-energy collision cascades in -iron using the
coupled two-temperature molecular dynamics (2T-MD) model that incorporates both
effects of electronic stopping and electron-ion interaction. We subsequently
compare it with the model employing the electronic stopping only, and find
several interesting novel insights. The 2T-MD results in both decreased damage
production in the thermal spike and faster relaxation of the damage at short
times. Notably, the 2T-MD model gives a similar amount of the final damage at
longer times, which we interpret to be the result of two competing effects:
smaller amount of short-time damage and shorter time available for damage
recovery.Comment: 8 pages, 6 figure
A Solution to the Protostellar Accretion Problem
Accretion rates of order 10^-8 M_\odot/yr are observed in young protostars of
approximately a solar mass with evidence of circumstellar disks. The accretion
rate is significantly lower for protostars of smaller mass, approximately
proportional to the second power of the stellar mass, \dot{M}_accr\propto M^2.
The traditional view is that the observed accretion is the consequence of the
angular momentum transport in isolated protostellar disks, controlled by disk
turbulence or self--gravity. However, these processes are not well understood
and the observed protostellar accretion, a fundamental aspect of star
formation, remains an unsolved problem. In this letter we propose the
protostellar accretion rate is controlled by accretion from the large scale gas
distribution in the parent cloud, not by the isolated disk evolution.
Describing this process as Bondi--Hoyle accretion, we obtain accretion rates
comparable to the observed ones. We also reproduce the observed dependence of
the accretion rate on the protostellar mass. These results are based on
realistic values of the ambient gas density and velocity, as inferred from
numerical simulations of star formation in self--gravitating turbulent clouds.Comment: 4 pages, 2 figures, ApJ Letters, in pres
Recommended from our members
Effect of Liquid Electrolyte Soaking on the Interfacial Resistance of Li7La3Zr2O12 for All-Solid-State Lithium Batteries.
The impact of liquid electrolyte soaking on the interfacial resistance between the garnet-structured Li7La3Zr2O12 (LLZO) solid electrolyte and metallic lithium has been studied. Lithium carbonate (Li2CO3) formed by inadvertent exposure of LLZO to ambient conditions is generally known to increase interfacial impedance and decrease lithium wettability. Soaking LLZO powders and pellets in the electrolyte containing lithium tetrafluoroborate (LiBF4) shows a significantly reduced interfacial resistance and improved contact between lithium and LLZO. Raman spectroscopy, X-ray diffraction, and soft X-ray absorption spectroscopy reveal how Li2CO3 is continuously removed with increasing soaking time. On-line mass spectrometry and free energy calculations show how LiBF4 reacts with surface carbonate to form carbon dioxide. Using a very simple and scalable process that does not involve heat-treatment and expensive coating techniques, we show that the Li-LLZO interfacial resistance can be reduced by an order of magnitude
- …