33 research outputs found

    Galilei Corneal Tomography for Screening of Refractive Surgery Candidates: A Review of the Literature, Part II

    Get PDF
    Corneal topography is the most widely used technology for examining the anterior corneal surface. Scheimpflug imaging is a newer technique that allows for measurement of both the anterior and posterior corneal surface, which allows for three-dimensional reconstruction of the cornea. This is of particular interest and value in the field of cataract and refractive surgery. The Galilei camera is a commercially available dual Scheimpflug system that combines curvature data from Placido disc-based corneal topography with elevation data from Scheimpflug technology. The addition of Placido disc topography makes the Galilei unique from its more popular counterpart, the Pentacam, which was discussed in Part I. Compared to the Pentacam, and however, the Galilei analyzer is a newer system that has emerged as a valuable screening tool given its dual Scheimpflug capability. In the first article of this series, the authors summarized the refractive indices available on the Pentacam system with the purpose of identifying the best diagnostic parameters for keratoconus. Similarly, the purpose of this article is to summarize corneal surface indices available on the Galilei system and evaluate their use in screening of the refractive surgery candidate. Since post-operative keratectasia is still prevalent, this paper aims to identify the most clinically relevant indices that may be used in pre-operative evaluation

    Advances in Biomechanical Parameters for Screening of Refractive Surgery Candidates: A Review of the Literature, Part III

    Get PDF
    Corneal biomechanical properties have garnered significant interest in their relation to the development of ectatic corneal disease. Alongside the advent of corneal tomography and Scheimpflug imaging such as Pentacam and Galilei, there have been advances in assessing the cornea based on its biomechanical characteristics. Though the aforementioned imaging systems are highly capable of identifying morphologic abnormalities, they cannot assess mechanical stability of the cornea. This article, in contrast to Parts I and II of this article series, will focus on in vivo corneal biomechanical imaging systems. The two most readily available commercial systems include the Corvis ST and the Ocular Response Analyzer. Both of these systems aimed to characterize corneal biomechanics via distinct measurements. While in Parts I and II of this article series the authors focused on elevation, pachymetric, and keratometric data, the purpose of this article was to summarize biomechanical parameters and their clinical use in screening refractive surgery candidates. Moreover, this article explores biomechanical decompensation and its role in the development of corneal ectasia and keratoconus. There is a focus on the diagnostic accuracy of biomechanical indices in the identification of diseases such as keratoconus that may preclude a patient from undergoing refractive surgery

    Mechanisms of Optical Regression Following Corneal Laser Refractive Surgery: Epithelial and Stromal Responses

    Get PDF
    Laser vision correction is a safe and effective method of reducing spectacle dependence. Photorefractive Keratectomy (PRK), Laser In Situ Keratomileusis (LASIK), and Small-Incision Lenticule Extraction (SMILE) can accurately correct myopia, hyperopia, and astigmatism. Although these procedures are nearing optimization in terms of their ability to produce a desired refractive target, the long term cellular responses of the cornea to these procedures can cause patients to regress from the their ideal postoperative refraction. In many cases, refractive regression requires follow up enhancement surgeries, presenting additional risks to patients. Although some risk factors underlying refractive regression have been identified, the exact mechanisms have not been elucidated. It is clear that cellular proliferation events are important mediators of optical regression.  This review focused specifically on cellular changes to the corneal epithelium and stroma, which may influence postoperative visual regression following LASIK, PRK, and SMILE procedures

    Pentacam® Corneal Tomography for Screening of Refractive Surgery Candidates: A Review of the Literature, Part I

    Get PDF
    Corneal tomography and Scheimpflug imaging are frequently used to analyze the corneal surface, especially in the field of cataract and refractive surgery. The Pentacam system is one of the most commonly used commercially available systems for this purpose. Through a rotating Scheimpflug camera, the system is capable of creating a three-dimensional map of the cornea. These advances in tomography have simultaneously enhanced the ability of clinicians to screen surgical candidates and detect subtle corneal changes in diseases such as keratoconus. However, there remains a need to enhance diagnosis in order to recognize mild and early forms of corneal ectasia. As iatrogenic ectasia and keratoconus are dreaded complications of refractive surgery, it is imperative to screen patients appropriately prior to surgery. The Pentacam is one of many systems utilized in the screening process, but the literature has not identified specific protocol nor parameters that are capable of carrying out this process appropriately. Post-operative keratoconus continues to occur despite the advances in technology seen in corneal imaging. Therefore, clear indices for screening are required in order to diagnose early forms of keratoconus and other corneal diseases that may exclude the seemingly asymptomatic patient from undergoing refractive surgery. This article aims to summarize the indices available on the Pentacam system and to identify the most accurate parameters for screening of the refractive surgery candidate

    Patient and Regimen Characteristics Associated with Self-Reported Nonadherence to Antiretroviral Therapy

    Get PDF
    BACKGROUND: Nonadherence to antiretroviral therapy (ARVT) is an important behavioral determinant of the success of ARVT. Nonadherence may lead to virological failure, and increases the risk of development of drug resistance. Understanding the prevalence of nonadherence and associated factors is important to inform secondary HIV prevention efforts. METHODOLOGY/PRINCIPAL FINDINGS: We used data from a cross-sectional interview study of persons with HIV conducted in 18 U.S. states from 2000-2004. We calculated the proportion of nonadherent respondents (took <95% of prescribed doses in the past 48 hours), and the proportion of doses missed. We used multivariate logistic regression to describe factors associated with nonadherence. Nine hundred and fifty-eight (16%) of 5,887 respondents reported nonadherence. Nonadherence was significantly (p<0.05) associated with black race and Hispanic ethnicity; age <40 years; alcohol or crack use in the prior 12 months; being prescribed >or=4 medications; living in a shelter or on the street; and feeling "blue" >or=14 of the past 30 days. We found weaker associations with having both male-male sex and injection drug use risks for HIV acquisition; being prescribed ARVT for >or=21 months; and being prescribed a protease inhibitor (PI)-based regimen not boosted with ritonavir. The median proportion of doses missed was 50%. The most common reasons for missing doses were forgetting and side effects. CONCLUSIONS/SIGNIFICANCE: Self-reported recent nonadherence was high in our study. Our data support increased emphasis on adherence in clinical settings, and additional research on how providers and patients can overcome barriers to adherence

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    Advances in Biomechanical Parameters for Screening of Refractive Surgery Candidates: A Review of the Literature, Part III

    Get PDF
    Corneal biomechanical properties have garnered significant interest in their relation to the development of ectatic corneal disease. Alongside the advent of corneal tomography and Scheimpflug imaging such as Pentacam and Galilei, there have been advances in assessing the cornea based on its biomechanical characteristics. Though the aforementioned imaging systems are highly capable of identifying morphologic abnormalities, they cannot assess mechanical stability of the cornea. This article, in contrast to Parts I and II of this article series, will focus on in vivo corneal biomechanical imaging systems. The two most readily available commercial systems include the Corvis ST and the Ocular Response Analyzer. Both of these systems aimed to characterize corneal biomechanics via distinct measurements. While in Parts I and II of this article series the authors focused on elevation, pachymetric, and keratometric data, the purpose of this article was to summarize biomechanical parameters and their clinical use in screening refractive surgery candidates. Moreover, this article explores biomechanical decompensation and its role in the development of corneal ectasia and keratoconus. There is a focus on the diagnostic accuracy of biomechanical indices in the identification of diseases such as keratoconus that may preclude a patient from undergoing refractive surgery

    An Update on Lower Lid Blepharoplasty

    No full text

    A systematic method for using 3D echocardiography to evaluate tricuspid valve insufficiency in hypoplastic left heart syndrome

    No full text
    With surgical palliation of hypoplastic left heart syndrome (HLHS), the tricuspid valve (TV) becomes the systemic atrioventricular valve and moderate/severe TV insufficiency (TVI), an adverse risk factor for survival to Fontan, has been reported in up to 35% of patients prior to stage I palliation. Precise echocardiographic identification of the mechanism of TVI cannot be determined by two-dimensional echocardiography. Three-dimensional echocardiography (3DE) can provide significant insight into the mechanisms of TVI. It is the intent of this report to propose a systematic method on how to evaluate and display 3DE images of the TV in HLHS which has not been done previously. TV anatomy, function, and the known mechanisms of insufficiency are reviewed. We defined three regions of the TV (anterior, posterior, septal) that can help define valve "leaflets" that incorporates the many variations of TV anatomy. To determine how the surgeon views the TV, a picture of a pathologic specimen of the TV was placed on a computer screen and rotated until it was oriented as it appears during surgery, the "surgeons view." We have proposed a systematic method for evaluating and displaying the TV using 3DE which can provide significant insight into the mechanisms causing TVI in HLHS. This has the potential to improve both the surgical approach to repairing the valve and, ultimately, patient outcomes
    corecore