13 research outputs found

    A population of proinflammatory T cells coexpresses αβ and γδ T cell receptors in mice and humans

    Get PDF
    T cells are classically recognized as distinct subsets that express αβ or γδ TCRs. We identify a novel population of T cells that coexpress αβ and γδ TCRs in mice and humans. These hybrid αβ-γδ T cells arose in the murine fetal thymus by day 16 of ontogeny, underwent αβ TCR–mediated positive selection into CD4+ or CD8+ thymocytes, and constituted up to 10% of TCRδ+ cells in lymphoid organs. They expressed high levels of IL-1R1 and IL-23R and secreted IFN-γ, IL-17, and GM-CSF in response to canonically restricted peptide antigens or stimulation with IL-1β and IL-23. Hybrid αβ-γδ T cells were transcriptomically distinct from conventional γδ T cells and displayed a hyperinflammatory phenotype enriched for chemokine receptors and homing molecules that facilitate migration to sites of inflammation. These proinflammatory T cells promoted bacterial clearance after infection with Staphylococcus aureus and, by licensing encephalitogenic Th17 cells, played a key role in the development of autoimmune disease in the central nervous system

    RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disorder with poorly defined aetiology characterised by synovial inflammation with variable disease severity and drug responsiveness. To investigate the peripheral blood immune cell landscape of early, drug naive RA, we performed comprehensive clinical and molecular profiling of 267 RA patients and 52 healthy vaccine recipients for up to 18 months to establish a high quality sample biobank including plasma, serum, peripheral blood cells, urine, genomic DNA, RNA from whole blood, lymphocyte and monocyte subsets. We have performed extensive multi-omic immune phenotyping, including genomic, metabolomic, proteomic, transcriptomic and autoantibody profiling. We anticipate that these detailed clinical and molecular data will serve as a fundamental resource offering insights into immune-mediated disease pathogenesis, progression and therapeutic response, ultimately contributing to the development and application of targeted therapies for RA.</p

    Mechanisms of vitamin D receptor and retinoid X receptor mediated hormone resistance and cell differentiation in normal and cancer cells

    No full text
    Vitamin D is a precursor to a steroid hormone, 1,25 dihydroxyvitamin D (1,25(OH)2D). After its discovery and the characterization of its receptor, the vitamin D receptor (VDR), it was initially thought only to be involved in calcium homeostasis, but further research revealed an important role for vitamin D in the regulation of cell growth and differentiation of such cells as osteoblasts and bone marrow adipocytes. 1,25(OH)2D has also been shown to be a strong inhibitor and pro-differentiator of keratinocytes. The anti-proliferative and pro-differentiative properties of this hormone have led to studies where 1,25(OH)2D anticancer properties were assessed and initial findings that showed a requirement of other factors beyond VDR to induce 1,25(OH)2D signaling led to the identification of the retinoid X receptor, a common heterodimeric partner for several hormone receptors. The focus of thesis was to further elucidate the structure-function relationship of both the vitamin D receptor and the retinoid X receptor. Additionally, contributions to work directed towards further identifying the effects of vitamin D on osteoblast differentiation and survival. Interactions of 1,25(OH) 2D3 with its cognate receptor, identifying a key amino acid (Tryptophan 286) required for ligand contact and transcriptional activation, are described in Chapter 2. Mechanisms of vitamin D action on mesenchymal stem cell differentiation, promotion of osteoblast induction and maturation, and inhibition of adipocyte differentiation, are eluicidated in Chapter 3. Chapter 4 illustrates the effects of RAS/RAF/Mitogen-activated protein kinase mediated RXRalpha phosphorylation on the three-dimensional structure of the RXR/nuclear receptor partner heterodimers. Furthermore, this chapter reveals the inhibitory effect of the phosphorylation of a critical amino acid (serine 260) on the interaction of the AF-2 domain of the RXR with several coactivators, resulting in a decrease in the signaling potential of multiple steroid hormone receptors. The findings of this thesis further the knowledge of several areas of vitamin D biology, including both the canonical areas of bone formation, and the non-canonical area of vitamin D and cancer

    1,25(OH) 2

    No full text

    Causal reasoning identifies mechanisms of sensitivity for a novel AKT kinase inhibitor, GSK690693

    No full text
    Abstract Background Inappropriate activation of AKT signaling is a relatively common occurrence in human tumors, and can be caused by activation of components of, or by loss or decreased activity of inhibitors of, this signaling pathway. A novel, pan AKT kinase inhibitor, GSK690693, was developed in order to interfere with the inappropriate AKT signaling seen in these human malignancies. Causal network modeling is a systematic computational analysis that identifies upstream changes in gene regulation that can serve as explanations for observed changes in gene expression. In this study, causal network modeling is employed to elucidate mechanisms of action of GSK690693 that contribute to its observed biological effects. The mechanism of action of GSK690693 was evaluated in multiple human tumor cell lines from different tissues in 2-D cultures and xenografts using RNA expression and phosphoproteomics data. Understanding the molecular mechanism of action of novel targeted agents can enhance our understanding of various biological processes regulated by the intended target and facilitate their clinical development. Results Causal network modeling on transcriptomic and proteomic data identified molecular networks that are comprised of activated or inhibited mechanisms that could explain observed changes in the sensitive cell lines treated with GSK690693. Four networks common to all cell lines and xenografts tested were identified linking GSK690693 inhibition of AKT kinase activity to decreased proliferation. These networks included increased RB1 activity, decreased MYC activity, decreased TFRC activity, and increased FOXO1/FOXO3 activity. Conclusion AKT is involved in regulating both cell proliferation and apoptotic pathways; however, the primary effect with GSK690693 appears to be anti-proliferative in the cell lines and xenografts evaluated. Furthermore, these results indicate that anti-proliferative responses to GSK690693 in either 2-D culture or xenograft models may share common mechanisms within and across sensitive cell lines.</p

    Therapeutic TNF Inhibitors Exhibit Differential Levels of Efficacy in Accelerating Cutaneous Wound Healing

    No full text
    Adalimumab but neither etanercept nor certolizumab-pegol has been reported to induce a wound-healing profile in vitro by regulating macrophage differentiation and matrix metalloproteinase expression, which may underlie the differences in efficacy between various TNF-α inhibitors in impaired wound healing in patients with hidradenitis suppurativa, a chronic inflammatory skin disease. To examine and compare the efficacy of various TNF inhibitors in cutaneous wound healing in vivo, a human TNF knock-in Leprdb/db mouse model was established to model the impaired cutaneous wound healing as seen in hidradenitis suppurativa. The vehicle group exhibited severe impairments in cutaneous wound healing. In contrast, adalimumab significantly accelerated healing, confirmed by both histologic assessment and a unique healing transcriptional profile. Moreover, adalimumab and infliximab showed similar levels of efficacy, but golimumab was less effective, along with etanercept and certolizumab-pegol. In line with histologic assessments, proteomics analyses from healing wounds exposed to various TNF inhibitors revealed distinct and differential wound-healing signatures that may underlie the differential efficacy of these inhibitors in accelerating cutaneous wound healing. Taken together, these data revealed that TNF inhibitors exhibited differential levels of efficacy in accelerating cutaneous wound healing in the impaired wound-healing model in vivo
    corecore