98 research outputs found

    The origin of deep ocean microseisms in the North Atlantic Ocean

    Get PDF
    Oceanic microseisms are small oscillations of the ground, in the frequency range of 0.05–0.3 Hz, associated with the occurrence of energetic ocean waves of half the corresponding frequency. In 1950, Longuet-Higgins suggested in a landmark theoretical paper that (i) microseisms originate from surface pressure oscillations caused by the interaction between oppositely travelling components with the same frequency in the ocean wave spectrum, (ii) these pressure oscillations generate seismic Stoneley waves on the ocean bottom, and (iii) when the ocean depth is comparable with the acoustic wavelength in water, compressibility must be considered. The efficiency of microseism generation thus depends on both the wave frequency and the depth of water. While the theory provided an estimate of the magnitude of the corresponding microseisms in a compressible ocean, its predictions of microseism amplitude heretofore have never been tested quantitatively. In this paper, we show a strong agreement between observed microseism and calculated amplitudes obtained by applying Longuet-Higgins' theory to hindcast ocean wave spectra from the North Atlantic Ocean. The calculated vertical displacements are compared with seismic data collected at stations in North America, Greenland, Iceland and Europe. This modelling identifies a particularly energetic source area stretching from the Labrador Sea to south of Iceland, where wind patterns are especially conducive to generating oppositely travelling waves of same period, and the ocean depth is favourable for efficient microseism generation through the ‘organ pipe’ resonance of the compression waves, as predicted by the theory. This correspondence between observations and the model predictions demonstrates that deep ocean nonlinear wave–wave interactions are sufficiently energetic to account for much of the observed seismic amplitudes in North America, Greenland and Iceland

    The distribution of extremal points of Gaussian scalar fields

    Full text link
    We consider the signed density of the extremal points of (two-dimensional) scalar fields with a Gaussian distribution. We assign a positive unit charge to the maxima and minima of the function and a negative one to its saddles. At first, we compute the average density for a field in half-space with Dirichlet boundary conditions. Then we calculate the charge-charge correlation function (without boundary). We apply the general results to random waves and random surfaces. Furthermore, we find a generating functional for the two-point function. Its Legendre transform is the integral over the scalar curvature of a 4-dimensional Riemannian manifold.Comment: 22 pages, 8 figures, corrected published versio

    Distribution of Oscillator Strengths for Recombination of Localised Excitons in Two Dimensions

    Full text link
    We investigate the distribution of oscillator strengths for the recombination of excitons in a two dimensional sample, trapped in local minima of the confinement potential: the results are derived from a statistical topographic model of the potential. The predicted distribution of oscillator strengths is very different from the Porter-Thomas disribution which usually characterises disordered systems, and is notable for the fact that small oscillator strengths are extremely rare.Comment: Plain TeX, 11 pages, 2 of 3 Postscript figures, to appear in "Chaos, Solitons and Fractals" special issue on Mesoscopic Physics, July 199

    Acoustic Energy and Momentum in a Moving Medium

    Full text link
    By exploiting the mathematical analogy between the propagation of sound in a non-homogeneous potential flow and the propagation of a scalar field in a background gravitational field, various wave ``energy'' and wave ``momentum'' conservation laws are established in a systematic manner. In particular the acoustic energy conservation law due to Blokhintsev appears as the result of the conservation of a mixed co- and contravariant energy-momentum tensor, while the exchange of relative energy between the wave and the mean flow mediated by the radiation stress tensor, first noted by Longuet-Higgins and Stewart in the context of ocean waves, appears as the covariant conservation of the doubly contravariant form of the same energy-momentum tensor.Comment: 25 Pages, Late

    Groundwater discharge to the western Antarctic coastal ocean

    Get PDF
    Submarine groundwater discharge (SGD) measurements have been limited along the Antarctic coast, although groundwater discharge is becoming recognized as an important process in the Antarctic. Quantifying this meltwater path-way is important for hydrologic budgets, ice mass balances and solute delivery to the coastal ocean. Here, we estimate the combined discharge of subglacial and submarine groundwater to the Antarctic coastal ocean. SGD, including subglacial and submarine groundwater, is quantified along the WAP at the Marr Glacier terminus using the activities of naturally occurring radium isotopes (223Ra, 224Ra). Estimated SGD fluxes from a 224Ra mass balance ranged from (0.41 ± 0.14)×104 and (8.2 ± 2.3)×104m3 d−1. Using a salinity mass balance, we estimate SGD contributes up to 32% of the total freshwater to the coastal environment near Palmer Station. This study suggests that a large portion of the melting glacier may be infiltrating into the bedrock and being discharged to coastal waters along the WAP. Meltwater infiltrating as groundwater at glacier termini is an import-ant solute delivery mechanism to the nearshore environment that can influence biological productivity. More importantly, quantifying this meltwater pathway may be worthy of attention when predicting future impacts of climate change on retreat of tidewater glaciers

    Modeling Boundary Vector Cell Firing Given Optic Flow as a Cue

    Get PDF
    Boundary vector cells in entorhinal cortex fire when a rat is in locations at a specific distance from walls of an environment. This firing may originate from memory of the barrier location combined with path integration, or the firing may depend upon the apparent visual input image stream. The modeling work presented here investigates the role of optic flow, the apparent change of patterns of light on the retina, as input for boundary vector cell firing. Analytical spherical flow is used by a template model to segment walls from the ground, to estimate self-motion and the distance and allocentric direction of walls, and to detect drop-offs. Distance estimates of walls in an empty circular or rectangular box have a mean error of less than or equal to two centimeters. Integrating these estimates into a visually driven boundary vector cell model leads to the firing patterns characteristic for boundary vector cells. This suggests that optic flow can influence the firing of boundary vector cells

    Salt-freshwater dynamics in a subterranean estuary over a spring-neap tidal cycle

    Get PDF
    This paper presents field measurements and numerical simulations of pore water salinities and groundwater flow in the intertidal zone of an unconfined coastal aquifer over a spring-neap tidal cycle. The study provides insight into the extent and time-scales of mixing between fresh groundwater and recirculating seawater in a tidally influenced subterranean estuary. Salt-freshwater dynamics in subterranean estuaries are currently not well understood despite their potentially important implications for fluxes of chemicals to coastal waters via submarine groundwater discharge. The data and simulation results show that changes in the tidal shoreline excursion over the spring-neap cycle induce significant variations in the intertidal salinity structure. Observed higher frequency salinity fluctuations demonstrate further the intensity and complexity of the salt-freshwater mixing process. In contrast with the salinity variations, fresh groundwater was found to discharge around a distinct intertidal beach slope break throughout the spring-neap period. This suggests that the slope break may affect significantly groundwater flow and salt transport near the shore. Measurements of pH and dissolved oxygen distributions revealed important biogeochemical zonations in the system. These zonations are expected to strongly influence the fate of many reactive chemicals in the nearshore aquifer and their subsequent discharge to coastal waters

    Tide-induced recirculation across the aquifer-ocean interface

    Get PDF
    A parametric analysis is conducted to examine the influence of tides, inland hydraulic conditions, and aquifer properties on the rate of tide-induced seawater recirculation through the nearshore aquifer. Understanding such influence is crucial for accurate prediction of subsurface chemical fluxes to coastal waters via groundwater discharge. The analysis is based on numerical simulations of density-dependent groundwater flow in a coastal aquifer subject to tidal oscillations across a sloping beach face. The results reveal that the amplitude of tidal oscillations and the inland hydraulic gradient are the primary parameters controlling the tide-induced recirculation rates. Significant tidal exchange is expected when the ratio of tidal to inland forcing is large. The horizontal tidal shoreline excursion and aquifer depth both display asymptotic behavior, influencing recirculation rates for only small values where the exchange process is limited by the potential for infiltration and shallowness of the aquifer, respectively. The analysis also indicates that tidal effects increase density-driven recirculation rates due to enhanced convective flow within the saltwater wedge

    Biological image motion processing: A review

    Full text link
    • …
    corecore