29 research outputs found

    Scalable Holistic Linear Regression

    Full text link
    We propose a new scalable algorithm for holistic linear regression building on Bertsimas & King (2016). Specifically, we develop new theory to model significance and multicollinearity as lazy constraints rather than checking the conditions iteratively. The resulting algorithm scales with the number of samples nn in the 10,000s, compared to the low 100s in the previous framework. Computational results on real and synthetic datasets show it greatly improves from previous algorithms in accuracy, false detection rate, computational time and scalability.Comment: Accepted by Operation Research Letter

    Stochastic Cutting Planes for Data-Driven Optimization

    Full text link
    We introduce a stochastic version of the cutting-plane method for a large class of data-driven Mixed-Integer Nonlinear Optimization (MINLO) problems. We show that under very weak assumptions the stochastic algorithm is able to converge to an ϵ\epsilon-optimal solution with high probability. Numerical experiments on several problems show that stochastic cutting planes is able to deliver a multiple order-of-magnitude speedup compared to the standard cutting-plane method. We further experimentally explore the lower limits of sampling for stochastic cutting planes and show that for many problems, a sampling size of O(n3)O(\sqrt[3]{n}) appears to be sufficient for high quality solutions

    Distributionally Robust Causal Inference with Observational Data

    Full text link
    We consider the estimation of average treatment effects in observational studies without the standard assumption of unconfoundedness. We propose a new framework of robust causal inference under the general observational study setting with the possible existence of unobserved confounders. Our approach is based on the method of distributionally robust optimization and proceeds in two steps. We first specify the maximal degree to which the distribution of unobserved potential outcomes may deviate from that of obsered outcomes. We then derive sharp bounds on the average treatment effects under this assumption. Our framework encompasses the popular marginal sensitivity model as a special case and can be extended to the difference-in-difference and regression discontinuity designs as well as instrumental variables. Through simulation and empirical studies, we demonstrate the applicability of the proposed methodology to real-world settings

    Branch-and-Price for Prescriptive Contagion Analytics

    Full text link
    Predictive contagion models are ubiquitous in epidemiology, social sciences, engineering, and management. This paper formulates a prescriptive contagion analytics model where a decision-maker allocates shared resources across multiple segments of a population, each governed by continuous-time dynamics. We define four real-world problems under this umbrella: vaccine distribution, vaccination centers deployment, content promotion, and congestion mitigation. These problems feature a large-scale mixed-integer non-convex optimization structure with constraints governed by ordinary differential equations, combining the challenges of discrete optimization, non-linear optimization, and continuous-time system dynamics. This paper develops a branch-and-price methodology for prescriptive contagion analytics based on: (i) a set partitioning reformulation; (ii) a column generation decomposition; (iii) a state-clustering algorithm for discrete-decision continuous-state dynamic programming; and (iv) a tri-partite branching scheme to circumvent non-linearities. Extensive experiments show that the algorithm scales to very large and otherwise-intractable instances, outperforming state-of-the-art benchmarks. Our methodology provides practical benefits in contagion systems; in particular, it can increase the effectiveness of a vaccination campaign by an estimated 12-70%, resulting in 7,000 to 12,000 extra saved lives over a three-month horizon mirroring the COVID-19 pandemic. We provide an open-source implementation of the methodology in an online repository to enable replication

    Holistic Deep Learning

    Full text link
    There is much interest in deep learning to solve challenges in applying neural network models in real-world environments. In particular, three areas have received considerable attention: adversarial robustness, parameter sparsity, and output stability. Despite numerous attempts to solve these problems independently, little work simultaneously addresses the challenges. In this paper, we address the problem of constructing holistic deep learning models by proposing a novel formulation that solves these issues in combination. Real-world experiments on both tabular and MNIST datasets show that our formulation can simultaneously improve the accuracy, robustness, stability, and sparsity over traditional deep learning models among many others.Comment: In preparation for Machine Learnin
    corecore