12 research outputs found

    Thermal nociceptive properties of trigeminal afferent neurons in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although nociceptive afferents innervating the body have been heavily studied form many years, much less attention has been paid to trigeminal afferent biology. In particular, very little is known concerning trigeminal nociceptor responses to heat, and almost nothing in the rat. This study uses a highly controlled and reproducible diode laser stimulator to investigate the activation of trigeminal afferents to noxious skin heating.</p> <p>Results</p> <p>The results of this experiment demonstrate that trigeminal thermonociceptors are distinct from themonociceptors innervating the limbs. Trigeminal nociceptors have considerably slower action potential conduction velocities and lower temperature thresholds than somatic afferent neurons. On the other hand, nociceptors innervating both tissue areas separate into those that respond to short pulse, high rate skin heating and those that respond to long pulse, low rate skin heating.</p> <p>Conclusions</p> <p>This paper provides the first description in the literature of the in vivo properties of thermonociceptors in rats. These finding of two separate populations aligns with the separation between C and A-delta thermonociceptors innervating the paw, but have significant differences in terms of temperature threshold and average conduction velocities. An understanding of the temperature response properties of afferent neurons innervating the paw skin have been critical in many mechanistic discoveries, some leading to new pain therapies. A clear understanding of trigeminal nociceptors may be similarly useful in the investigation of trigeminal pain mechanisms and potential therapies.</p

    Intrathecal Administration of AYX2 DNA Decoy Produces a Long-Term Pain Treatment in Rat Models of Chronic Pain by Inhibiting the KLF6, KLF9, and KLF15 Transcription Factors

    Get PDF
    Background: Nociception is maintained by genome-wide regulation of transcription in the dorsal root ganglia—spinal cord network. Hence, transcription factors constitute a promising class of targets for breakthrough pharmacological interventions to treat chronic pain. DNA decoys are oligonucleotides and specific inhibitors of transcription factor activities. A methodological series of in vivo–in vitro screening cycles was performed with decoy/transcription factor couples to identify targets capable of producing a robust and long-lasting inhibition of established chronic pain. Decoys were injected intrathecally and their efficacy was tested in the spared nerve injury and chronic constriction injury models of chronic pain in rats using repetitive von Frey testing. Results: Results demonstrated that a one-time administration of decoys binding to the Kruppel-like transcription factors (KLFs) 6, 9, and 15 produces a significant and weeks–month long reduction in mechanical hypersensitivity compared to controls. In the spared nerve injury model, decoy efficacy was correlated to its capacity to bind KLF15 and KLF9 at a specific ratio, while in the chronic constriction injury model, efficacy was correlated to the combined binding capacity to KLF6 and KLF9. AYX2, an 18-bp DNA decoy binding KLF6, KLF9, and KLF15, was optimized for clinical development, and it demonstrated significant efficacy in these models. Conclusions: These data highlight KLF6, KLF9, and KLF15 as transcription factors required for the maintenance of chronic pain and illustrate the potential therapeutic benefits of AYX2 for the treatment of chronic pain

    Pharmacology, Pharmacokinetics, and Metabolism of the DNA-Decoy AYX1 for the Prevention of Acute and Chronic Post-Surgical Pain

    Get PDF
    Background: AYX1 is an unmodified DNA-decoy designed to reduce acute post-surgical pain and its chronification with a single intrathecal dose at the time of surgery. AYX1 inhibits the transcription factor early growth response protein 1, which is transiently induced at the time of injury and triggers gene regulation in the dorsal root ganglia and spinal cord that leads to long-term sensitization and pain. This work characterizes the AYX1 dose-response profile in rats and the link to AYX1 pharmacokinetics and metabolism in the cerebrospinal fluid, dorsal root ganglia, and spinal cord. Results: The effects of ascending dose-levels of AYX1 on mechanical hypersensitivity were measured in the spared nerve injury model of chronic pain and in a plantar incision model of acute post-surgical pain. AYX1 dose-response profile shows that efficacy rapidly increases from a minimum effective dose of ∼ 0.5 mg to a peak maximum effective dose of ∼ 1 mg. With further dose escalation, the efficacy paradoxically appears to decrease by ∼ 30% and then returns to full efficacy at the maximum feasible dose of ∼ 4 mg. The reduction of efficacy is associated to doses triggering a near-saturation of AYX1 metabolism by nucleases in the cerebrospinal fluid and a paradoxical reduction of AYX1 exposure during the period of early growth response protein 1 induction. This effect is overcome at higher doses that compensate for the effect of metabolism. Discussion: AYX1 is a competitive antagonist of early growth response protein 1, which is consistent with the overall increased efficacy observed as dose-levels initially escalate. Chemically, AYX1 is unprotected against degradation by nucleases. The sensitivity to nucleases is reflected in a paradoxical reduction of efficacy in the dose-response curve. Conclusions: These findings point to the importance of the nuclease environment of the cerebrospinal fluid to the research and development of AYX1 and other intrathecal nucleotide-based therapeutics

    Selective nociceptor activation in volunteers by infrared diode laser

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two main classes of peripheral sensory neurons contribute to thermal pain sensitivity: the unmyelinated C fibers and thinly myelinated Aδ fibers. These two fiber types may differentially underlie different clinical pain states and distinctions in the efficacy of analgesic treatments. Methods of differentially testing C and Aδ thermal pain are widely used in animal experimentation, but these methods are not optimal for human volunteer and patient use. Thus, this project aimed to provide psychophysical and electrophysiological evidence that whether different protocols of infrared diode laser stimulation, which allows for direct activation of nociceptive terminals deep in the skin, could differentially activate Aδ or C fiber thermonociceptors in volunteers.</p> <p>Results</p> <p>Short (60 ms), high intensity laser pulses (SP) evoked monomodal "pricking" pain which was not enhanced by topical capsaicin, whereas longer, lower power pulses (LP) evoked monomodal "burning" pain which was enhanced by topical capsaicin. SP also produced cortical evoked EEG potentials consistent with Aδ mediation, the amplitude of which was directly correlated with pain intensity but was not affected by topical capsaicin. LP also produced a distinct evoked potential pattern the amplitude of which was also correlated with pain intensity, which was enhanced by topical capsaicin, and the latency of which could be used to estimate the conduction velocity of the mediating nociceptive fibers.</p> <p>Conclusions</p> <p>Psychophysical and electrophysiological data were consistent with the ability of short high intensity infrared laser pulses to selectively produce Aδ mediated pain and of longer pulses to selectively produce C fiber mediated thermal pain. Thus, the use of these or similar protocols may be useful in developing and testing novel therapeutics based on the differential molecular mechanisms underlying activation of the two fiber types (e.g., TRPV1, TRPV2, etc). In addition, these protocol may be useful in determining the fiber mediation of different clinical pain types which may, in turn be useful in treatment choice.</p

    Pharmacology, Pharmacokinetics, and Metabolism of the DNA-Decoy AYX1 for the Prevention of Acute and Chronic Post-Surgical Pain

    Get PDF
    Background: AYX1 is an unmodified DNA-decoy designed to reduce acute post-surgical pain and its chronification with a single intrathecal dose at the time of surgery. AYX1 inhibits the transcription factor early growth response protein 1, which is transiently induced at the time of injury and triggers gene regulation in the dorsal root ganglia and spinal cord that leads to long-term sensitization and pain. This work characterizes the AYX1 dose-response profile in rats and the link to AYX1 pharmacokinetics and metabolism in the cerebrospinal fluid, dorsal root ganglia, and spinal cord. Results: The effects of ascending dose-levels of AYX1 on mechanical hypersensitivity were measured in the spared nerve injury model of chronic pain and in a plantar incision model of acute post-surgical pain. AYX1 dose-response profile shows that efficacy rapidly increases from a minimum effective dose of ∼ 0.5 mg to a peak maximum effective dose of ∼ 1 mg. With further dose escalation, the efficacy paradoxically appears to decrease by ∼ 30% and then returns to full efficacy at the maximum feasible dose of ∼ 4 mg. The reduction of efficacy is associated to doses triggering a near-saturation of AYX1 metabolism by nucleases in the cerebrospinal fluid and a paradoxical reduction of AYX1 exposure during the period of early growth response protein 1 induction. This effect is overcome at higher doses that compensate for the effect of metabolism. Discussion: AYX1 is a competitive antagonist of early growth response protein 1, which is consistent with the overall increased efficacy observed as dose-levels initially escalate. Chemically, AYX1 is unprotected against degradation by nucleases. The sensitivity to nucleases is reflected in a paradoxical reduction of efficacy in the dose-response curve. Conclusions: These findings point to the importance of the nuclease environment of the cerebrospinal fluid to the research and development of AYX1 and other intrathecal nucleotide-based therapeutics

    Intrathecal Administration of AYX2 DNA Decoy Produces a Long-Term Pain Treatment in Rat Models of Chronic Pain by Inhibiting the KLF6, KLF9, and KLF15 Transcription Factors

    Get PDF
    Background: Nociception is maintained by genome-wide regulation of transcription in the dorsal root ganglia—spinal cord network. Hence, transcription factors constitute a promising class of targets for breakthrough pharmacological interventions to treat chronic pain. DNA decoys are oligonucleotides and specific inhibitors of transcription factor activities. A methodological series of in vivo–in vitro screening cycles was performed with decoy/transcription factor couples to identify targets capable of producing a robust and long-lasting inhibition of established chronic pain. Decoys were injected intrathecally and their efficacy was tested in the spared nerve injury and chronic constriction injury models of chronic pain in rats using repetitive von Frey testing. Results: Results demonstrated that a one-time administration of decoys binding to the Kruppel-like transcription factors (KLFs) 6, 9, and 15 produces a significant and weeks–month long reduction in mechanical hypersensitivity compared to controls. In the spared nerve injury model, decoy efficacy was correlated to its capacity to bind KLF15 and KLF9 at a specific ratio, while in the chronic constriction injury model, efficacy was correlated to the combined binding capacity to KLF6 and KLF9. AYX2, an 18-bp DNA decoy binding KLF6, KLF9, and KLF15, was optimized for clinical development, and it demonstrated significant efficacy in these models. Conclusions: These data highlight KLF6, KLF9, and KLF15 as transcription factors required for the maintenance of chronic pain and illustrate the potential therapeutic benefits of AYX2 for the treatment of chronic pain
    corecore