80 research outputs found

    Seasonal Noise Versus Subseasonal Signal: Forecasts of California Precipitation During the Unusual Winters of 2015–2016 and 2016–2017

    Get PDF
    Subseasonal forecasts of California precipitation during the unusual winters of 2015–2016 and 2016–2017 are examined in this study. It is shown that two different ensemble forecast systems were able to predict monthly precipitation anomalies in California during these periods with some skill in forecasts initialized near or at the start of the month. The unexpected anomalies in February 2016, as well as in January and February 2017, were associated with shifts in the position of the jet stream over the northeast Pacific in a manner broadly consistent with associations found in larger ensembles of forecasts. These results support the broader notion that what is unpredictable atmospheric noise at the seasonal time scale can become predictable signal at the subseasonal time scale, despite that the lead times and verification averaging times associated with these forecasts are outside the predictability horizons of canonical midrange weather forecasting

    Rapid intensification and the bimodal distribution of tropical cyclone intensity

    Get PDF
    The severity of a tropical cyclone (TC) is often summarized by its lifetime maximum intensity (LMI), and the climatological LMI distribution is a fundamental feature of the climate system. The distinctive bimodality of the LMI distribution means that major storms (LMI >96 kt) are not very rare compared with less intense storms. Rapid intensification (RI) is the dramatic strengthening of a TC in a short time, and is notoriously difficult to forecast or simulate. Here we show that the bimodality of the LMI distribution reflects two types of storms: those that undergo RI during their lifetime (RI storms) and those that do not (non-RI storms). The vast majority (79%) of major storms are RI storms. Few non-RI storms (6%) become major storms. While the importance of RI has been recognized in weather forecasting, our results demonstrate that RI also plays a crucial role in the TC climatology

    Probabilistic Multiple Linear Regression Modeling for Tropical Cyclone Intensity

    Get PDF
    The authors describe the development and verification of a statistical model relating tropical cyclone (TC) intensity to the local large-scale environment. A multiple linear regression framework is used to estimate the expected intensity of a tropical cyclone given the environmental and storm conditions. The uncertainty of the estimate is constructed from the empirical distribution of model errors. NCEP–NCAR reanalysis fields and historical hurricane data from 1981 to 1999 are used for model development, and data from 2000 to 2012 are used to evaluate model performance. Seven predictors are selected: initial storm intensity, the change of storm intensity over the past 12 h, the storm translation speed, the difference between initial storm intensity and its corresponding potential intensity, deep-layer (850–200 hPa) vertical shear, atmospheric stability, and 200-hPa divergence. The system developed here models storm intensity changes in response to changes in the surrounding environment with skill comparable to existing operational forecast tools. Since one application of such a model is to predict changes in TC activity in response to natural or anthropogenic climate change, the authors examine the performance of the model using data that is most readily available from global climate models, that is, monthly averages. It is found that statistical models based on monthly data (as opposed to daily) with only a few essential predictors, for example, the difference between storm intensity and potential intensity, perform nearly as well at short leads as when daily predictors are used
    • …
    corecore