223 research outputs found

    Large scale evaluation of importance maps in automatic speech recognition

    Full text link
    In this paper, we propose a metric that we call the structured saliency benchmark (SSBM) to evaluate importance maps computed for automatic speech recognizers on individual utterances. These maps indicate time-frequency points of the utterance that are most important for correct recognition of a target word. Our evaluation technique is not only suitable for standard classification tasks, but is also appropriate for structured prediction tasks like sequence-to-sequence models. Additionally, we use this approach to perform a large scale comparison of the importance maps created by our previously introduced technique using "bubble noise" to identify important points through correlation with a baseline approach based on smoothed speech energy and forced alignment. Our results show that the bubble analysis approach is better at identifying important speech regions than this baseline on 100 sentences from the AMI corpus.Comment: submitted to INTERSPEECH 202

    EM localization and separation using interaural level and phase cues

    Get PDF
    We describe a system for localizing and separating multiple sound sources from a reverberant two-channel recording. It consists of a probabilistic model of interaural level and phase differences and an EM algorithm for finding the maximum likelihood parameters of this model. By assigning points in the interaural spectrogram probabilistically to sources with the best-fitting parameters and then estimating the parameters of the sources from the points assigned to them, the system is able to separate and localize more sound sources than there are available channels. It is also able to estimate frequency-dependent level differences of sources in a mixture that correspond well to those measured in isolation. In experiments in simulated anechoic and reverberant environments, the proposed system improved the signal-to-noise ratio of target sources by 2.7 and 3.4dB more than two comparable algorithms on average

    Improving MIDI-audio alignment with acoustic features

    Get PDF
    This paper describes a technique to improve the accuracy of dynamic time warping-based MIDI-audio alignment. The technique implements a hidden Markov model that uses aperiodicity and power estimates from the signal as observations and the results of a dynamic time warping alignment as a prior. In addition to improving the overall alignment, this technique also identifies the transient and steady state sections of the note. This information is important for describing various aspects of a musical performance, including both pitch and rhythm
    • …
    corecore