4 research outputs found

    Towards Patient-Specific Brain Networks Using Functional Magnetic Resonance Imaging

    Get PDF
    fMRI applications are rare in translational medicine and clinical practice. What can be inferred from a single fMRI scan is often unreliable due to the relative low signal-to-noise ratio compared to other neuroimaging modalities. However, the potential of fMRI is promising. It is one of the few neuroimaging modalities to obtain functional brain organisation of an individual during task engagement and rest. This work extends on current fMRI image processing approaches to obtain robust estimates of functional brain organisation in two resting-state fMRI cohorts. The first cohort comprises of young adults who were born at extremely low gestations and age-matched healthy controls. Group analysis between term- and preterm-born adults revealed differences in functional organisation, which were discovered to be predominantly caused by underlying structural and physiological differences. The second cohort comprises of elderly adults with young onset Alzheimer’s disease and age-matched controls. Their corresponding resting-state fMRI scans are short in scanning time resulting in unreliable spatial estimates with conventional dual regression analysis. This problem was addressed by the development of an ensemble averaging of matrix factorisations approach to compute single subject spatial maps characterised by improved spatial reproducibility compared to maps obtained by dual regression. The approach was extended with a haemodynamic forward model to obtain surrogate neural activations to examine the subject’s task behaviour. This approach applied to two task-fMRI cohorts showed that these surrogate neural activations matched with original task timings in most of the examined fMRI scans but also revealed subjects with task behaviour different than intended by the researcher. It is hoped that both the findings in this work and the novel matrix factorisation approach itself will benefit the fMRI community. To this end, the derived tools are made available online to aid development and validation of methods for resting-state and task fMRI experiments

    Study protocol: Insight 46:a neuroscience sub-study of the MRC National Survey of Health and Development

    No full text
    00000International audienceIncreasing age is the biggest risk factor for dementia, of which Alzheimer’s disease is the commonest cause. The pathological changes underpinning Alzheimer’s disease are thought to develop at least a decade prior to the onset of symptoms. Molecular positron emission tomography and multi-modal magnetic resonance imaging allow key pathological processes underpinning cognitive impairment – including β-amyloid depostion, vascular disease, network breakdown and atrophy – to be assessed repeatedly and non-invasively. This enables potential determinants of dementia to be delineated earlier, and therefore opens a pre-symptomatic window where intervention may prevent the onset of cognitive symptoms

    Study protocol: Insight 46 – a neuroscience sub-study of the MRC National Survey of Health and Development

    No full text
    corecore