653 research outputs found
Optimization of Training and Feedback Overhead for Beamforming over Block Fading Channels
We examine the capacity of beamforming over a single-user, multi-antenna link
taking into account the overhead due to channel estimation and limited feedback
of channel state information. Multi-input single-output (MISO) and multi-input
multi-output (MIMO) channels are considered subject to block Rayleigh fading.
Each coherence block contains symbols, and is spanned by training
symbols, feedback bits, and the data symbols. The training symbols are used
to obtain a Minimum Mean Squared Error estimate of the channel matrix. Given
this estimate, the receiver selects a transmit beamforming vector from a
codebook containing {\em i.i.d.} random vectors, and sends the
corresponding bits back to the transmitter. We derive bounds on the
beamforming capacity for MISO and MIMO channels and characterize the optimal
(rate-maximizing) training and feedback overhead ( and ) as and the
number of transmit antennas both become large. The optimal is
limited by the coherence time, and increases as . For the MISO
channel the optimal and (fractional overhead due to training and
feedback) are asymptotically the same, and tend to zero at the rate . For the MIMO channel the optimal feedback overhead tends to zero
faster (as ).Comment: accepted for IEEE Trans. Info. Theory, 201
Sharing of Unlicensed Spectrum by Strategic Operators
Facing the challenge of meeting ever-increasing demand for wireless data, the
industry is striving to exploit large swaths of spectrum which anyone can use
for free without having to obtain a license. Major standards bodies are
currently considering a proposal to retool and deploy Long Term Evolution (LTE)
technologies in unlicensed bands below 6 GHz. This paper studies the
fundamental questions of whether and how the unlicensed spectrum can be shared
by intrinsically strategic operators without suffering from the tragedy of the
commons. A class of general utility functions is considered. The spectrum
sharing problem is formulated as a repeated game over a sequence of time slots.
It is first shown that a simple static sharing scheme allows a given set of
operators to reach a subgame perfect Nash equilibrium for mutually beneficial
sharing. The question of how many operators will choose to enter the market is
also addressed by studying an entry game. A sharing scheme which allows dynamic
spectrum borrowing and lending between operators is then proposed to address
time-varying traffic and proved to achieve perfect Bayesian equilibrium.
Numerical results show that the proposed dynamic sharing scheme outperforms
static sharing, which in turn achieves much higher revenue than uncoordinated
full-spectrum sharing. Implications of the results to the standardization and
deployment of LTE in unlicensed bands (LTE-U) are also discussed.Comment: To appear in the IEEE Journal on Selected Areas in Communications,
Special Issue on Game Theory for Network
Distributed Optimization of Multi-Cell Uplink Co-operation with Backhaul Constraints
We address the problem of uplink co-operative reception with constraints on
both backhaul bandwidth and the receiver aperture, or number of antenna signals
that can be processed. The problem is cast as a network utility (weighted sum
rate) maximization subject to computational complexity and architectural
bandwidth sharing constraints. We show that a relaxed version of the problem is
convex, and can be solved via a dual-decomposition. The proposed solution is
distributed in that each cell broadcasts a set of {\em demand prices} based on
the data sharing requests they receive. Given the demand prices, the algorithm
determines an antenna/cell ordering and antenna-selection for each scheduled
user in a cell. This algorithm, referred to as {\em LiquidMAAS}, iterates
between the preceding two steps. Simulations of realistic network scenarios
show that the algorithm exhibits fast convergence even for systems with large
number of cells.Comment: IEEE ICC Conference, 201
Downlink Noncoherent Cooperation without Transmitter Phase Alignment
Multicell joint processing can mitigate inter-cell interference and thereby
increase the spectral efficiency of cellular systems. Most previous work has
assumed phase-aligned (coherent) transmissions from different base transceiver
stations (BTSs), which is difficult to achieve in practice. In this work, a
noncoherent cooperative transmission scheme for the downlink is studied, which
does not require phase alignment. The focus is on jointly serving two users in
adjacent cells sharing the same resource block. The two BTSs partially share
their messages through a backhaul link, and each BTS transmits a superposition
of two codewords, one for each receiver. Each receiver decodes its own message,
and treats the signals for the other receiver as background noise. With
narrowband transmissions the achievable rate region and maximum achievable
weighted sum rate are characterized by optimizing the power allocation (and the
beamforming vectors in the case of multiple transmit antennas) at each BTS
between its two codewords. For a wideband (multicarrier) system, a dual
formulation of the optimal power allocation problem across sub-carriers is
presented, which can be efficiently solved by numerical methods. Results show
that the proposed cooperation scheme can improve the sum rate substantially in
the low to moderate signal-to-noise ratio (SNR) range.Comment: 30 pages, 6 figures, submitted to IEEE Transactions on Wireless
Communication
Traffic Driven Resource Allocation in Heterogenous Wireless Networks
Most work on wireless network resource allocation use physical layer
performance such as sum rate and outage probability as the figure of merit.
These metrics may not reflect the true user QoS in future heterogenous networks
(HetNets) with many small cells, due to large traffic variations in overlapping
cells with complicated interference conditions. This paper studies the spectrum
allocation problem in HetNets using the average packet sojourn time as the
performance metric. To be specific, in a HetNet with base terminal stations
(BTS's), we determine the optimal partition of the spectrum into possible
spectrum sharing combinations. We use an interactive queueing model to
characterize the flow level performance, where the service rates are decided by
the spectrum partition. The spectrum allocation problem is formulated using a
conservative approximation, which makes the optimization problem convex. We
prove that in the optimal solution the spectrum is divided into at most
pieces. A numerical algorithm is provided to solve the spectrum allocation
problem on a slow timescale with aggregate traffic and service information.
Simulation results show that the proposed solution achieves significant gains
compared to both orthogonal and full spectrum reuse allocations with moderate
to heavy traffic.Comment: 6 pages, 5 figures IEEE GLOBECOM 2014 (accepted for publication
- β¦